Skip to main content
Erschienen in: Journal of Intelligent Manufacturing 2/2021

02.05.2020

Semi-supervised deep learning based framework for assessing manufacturability of cellular structures in direct metal laser sintering process

verfasst von: Yilin Guo, Wen Feng Lu, Jerry Ying Hsi Fuh

Erschienen in: Journal of Intelligent Manufacturing | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, metal cellular structures have drawn attentions in various industrial sectors due to their design freedoms and abilities to achieve multi-functional mechanical properties. However, metal cellular structures are difficult to fabricate due to their complex geometries, even with modern additive manufacturing technologies such as the direct metal laser sintering (DMLS) process. Assessing the manufacturability of metal cellular structures via a DMLS process is a challenging task as the geometric features of the structures are complex. Besides, via a DMLS process, the manufacturability also depends on the cumulative deformation of the layers during the manufacturing process. Existing methods on Design for Additive Manufacturing (DFAM) provide design guidelines that are based on past successful printed designs. However, they are not effective in predicting the manufacturability of metal cellular structures. In this paper, we propose a semi-supervised deep learning based manufacturability assessment (SSDLMA) framework to assess whether a metal cellular structure can be successfully manufactured from a given DMLS process. To enable efficient learning, we represent the complex cellular structures as 3D binary arrays with a simple yet efficient voxelisation method. We then train a deep learning based classifier using only a small amount of experimental data by adopting a semi-supervised learning approach. By running real experiments and comparing with existing DFAM methods and machine learning models, we demonstrate the advantages of the proposed SSDLMA framework. The proposed framework can be extended to predict the manufacturability of various other complex geometries beyond cellular structure in a reliable way even with a small number of training data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat 3D SYSTEMS. (2018). ProJet MJP wax 3D printing is a Gem to Uptown Diamond & Jewelry. 3D SYSTEMS. (2018). ProJet MJP wax 3D printing is a Gem to Uptown Diamond & Jewelry.
Zurück zum Zitat Afazov, S., Denmark, W. A., Lazaro Toralles, B., Holloway, A., & Yaghi, A. (2017). Distortion prediction and compensation in selective laser melting. Additive Manufacturing, 17, 15–22.CrossRef Afazov, S., Denmark, W. A., Lazaro Toralles, B., Holloway, A., & Yaghi, A. (2017). Distortion prediction and compensation in selective laser melting. Additive Manufacturing, 17, 15–22.CrossRef
Zurück zum Zitat Ahmadi, S., Yavari, S., Wauthle, R., Pouran, B., Schrooten, J., Weinans, H., et al. (2015). Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: The mechanical and morphological properties. Materials, 8, 1871–1896.CrossRef Ahmadi, S., Yavari, S., Wauthle, R., Pouran, B., Schrooten, J., Weinans, H., et al. (2015). Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: The mechanical and morphological properties. Materials, 8, 1871–1896.CrossRef
Zurück zum Zitat Aminzadeh, Masoumeh, & Kurfess, Thomas R. (2019). Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images. Journal of Intelligent Manufacturing, 30(6), 2505–2523.CrossRef Aminzadeh, Masoumeh, & Kurfess, Thomas R. (2019). Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images. Journal of Intelligent Manufacturing, 30(6), 2505–2523.CrossRef
Zurück zum Zitat Bayat, M., Mohanty, S., & Hattel, J. H. (2019). Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF. International Journal of Heat and Mass Transfer, 139, 95–114.CrossRef Bayat, M., Mohanty, S., & Hattel, J. H. (2019). Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF. International Journal of Heat and Mass Transfer, 139, 95–114.CrossRef
Zurück zum Zitat Cansizoglu, O., Harrysson, O. L., West, H. A., Cormier, D. R., & Mahale, T. (2008). Applications of structural optimization in direct metal fabrication. Rapid Prototyping Journal, 14(2), 114–122.CrossRef Cansizoglu, O., Harrysson, O. L., West, H. A., Cormier, D. R., & Mahale, T. (2008). Applications of structural optimization in direct metal fabrication. Rapid Prototyping Journal, 14(2), 114–122.CrossRef
Zurück zum Zitat Clijsters, S., Craeghs, T., Moesen, M., & Kruth, J.-P. (2012). Optimization of thin wall structures in SLM. In Fraunhofer additive manufacturing alliance, direct digital manufacturing conference (pp. 14–15). Clijsters, S., Craeghs, T., Moesen, M., & Kruth, J.-P. (2012). Optimization of thin wall structures in SLM. In Fraunhofer additive manufacturing alliance, direct digital manufacturing conference (pp. 14–15).
Zurück zum Zitat EOS GmbH. (2011). Electro optical systems, 2011. “Material data sheet EOS MaragingSteel MS1” (pp. 1–6). EOS GmbH. (2011). Electro optical systems, 2011. “Material data sheet EOS MaragingSteel MS1” (pp. 1–6).
Zurück zum Zitat EOS GmbH. (2018). Help is fast at hand thanks to additive manufacturing: Alphaform produces a hip replacement designed by instrumentaria. EOS GmbH. (2018). Help is fast at hand thanks to additive manufacturing: Alphaform produces a hip replacement designed by instrumentaria.
Zurück zum Zitat Ghadai, S., Balu, A., Sarkar, S., & Krishnamurthy, A. (2018). Learning localized features in 3D CAD models for manufacturability analysis of drilled holes. Computer Aided Geometric Design, 62, 263–275.CrossRef Ghadai, S., Balu, A., Sarkar, S., & Krishnamurthy, A. (2018). Learning localized features in 3D CAD models for manufacturability analysis of drilled holes. Computer Aided Geometric Design, 62, 263–275.CrossRef
Zurück zum Zitat Giannitelli, S., Accoto, D., Trombetta, M., & Rainer, A. (2014). Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomaterialia, 10(2), 580–594.CrossRef Giannitelli, S., Accoto, D., Trombetta, M., & Rainer, A. (2014). Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomaterialia, 10(2), 580–594.CrossRef
Zurück zum Zitat Gibson, I., Rosen, D., & Stucker, B. (2015). Additive manufacturing technologies: 3D printing, rapid prototyping and direct digital manufacturing (2nd ed.). Springer. Gibson, I., Rosen, D., & Stucker, B. (2015). Additive manufacturing technologies: 3D printing, rapid prototyping and direct digital manufacturing (2nd ed.). Springer.
Zurück zum Zitat Helou, M., & Kara, S. (2018). Design, analysis and manufacturing of lattice structures: An overview. International Journal of Computer Integrated Manufacturing, 31(3), 243–261.CrossRef Helou, M., & Kara, S. (2018). Design, analysis and manufacturing of lattice structures: An overview. International Journal of Computer Integrated Manufacturing, 31(3), 243–261.CrossRef
Zurück zum Zitat Hussein, A., Hao, L., Yan, C., Everson, R., & Young, P. (2013). Advanced lattice support structures for metal additive manufacturing. Journal of Materials Processing Technology, 213(7), 1019–1026.CrossRef Hussein, A., Hao, L., Yan, C., Everson, R., & Young, P. (2013). Advanced lattice support structures for metal additive manufacturing. Journal of Materials Processing Technology, 213(7), 1019–1026.CrossRef
Zurück zum Zitat Keller, N., & Ploshikhin, V. (2014). New Method for Fast Predictions of Residual Stress and Distortions of AM Parts. Solid Freeform Fabrication Symposium, (August 2014), pp. 1229–1237. Keller, N., & Ploshikhin, V. (2014). New Method for Fast Predictions of Residual Stress and Distortions of AM Parts. Solid Freeform Fabrication Symposium, (August 2014), pp. 1229–1237.
Zurück zum Zitat Kingma, D. P., Rezende, D. J., Mohamed, S., & Welling, M. (2014). Semi-supervised learning with deep generative models. In Proceedings of the 27th international conference on neural information processing systems, NIPS’14 (Vol. 2, pp. 3581–3589), MIT Press. Kingma, D. P., Rezende, D. J., Mohamed, S., & Welling, M. (2014). Semi-supervised learning with deep generative models. In Proceedings of the 27th international conference on neural information processing systems, NIPS’14 (Vol. 2, pp. 3581–3589), MIT Press.
Zurück zum Zitat Kranz, J., Herzog, D., & Emmelmann, C. (2015). Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4. Journal of Laser Applications, 27(S1), S14001.CrossRef Kranz, J., Herzog, D., & Emmelmann, C. (2015). Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4. Journal of Laser Applications, 27(S1), S14001.CrossRef
Zurück zum Zitat Mercelis, P., & Kruth, J. P. J. (2006). Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping Journal, 12(5), 254–265.CrossRef Mercelis, P., & Kruth, J. P. J. (2006). Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping Journal, 12(5), 254–265.CrossRef
Zurück zum Zitat Ning, J., Sievers, D. E., Garmestani, H., & Liang, S. Y. (2019a). Analytical modeling of in-process temperature in powder bed additive manufacturing considering laser power absorption, latent heat, scanning strategy, and powder packing. Materials, 12(5), 1–16.CrossRef Ning, J., Sievers, D. E., Garmestani, H., & Liang, S. Y. (2019a). Analytical modeling of in-process temperature in powder bed additive manufacturing considering laser power absorption, latent heat, scanning strategy, and powder packing. Materials, 12(5), 1–16.CrossRef
Zurück zum Zitat Ning, J., Sievers, D. E., Garmestani, H., & Liang, S. Y. (2019b). Analytical thermal modeling of metal additive manufacturing by heat sink solution. Materials, 12(16), 1–15.CrossRef Ning, J., Sievers, D. E., Garmestani, H., & Liang, S. Y. (2019b). Analytical thermal modeling of metal additive manufacturing by heat sink solution. Materials, 12(16), 1–15.CrossRef
Zurück zum Zitat Ning, J., Sievers, D. E., Garmestani, H., & Liang, S. Y. (2020). Analytical modeling of in-situ deformation of part and substrate in laser cladding additive manufacturing of Inconel 625. Journal of Manufacturing Processes, 49(May 2019), 135–140.CrossRef Ning, J., Sievers, D. E., Garmestani, H., & Liang, S. Y. (2020). Analytical modeling of in-situ deformation of part and substrate in laser cladding additive manufacturing of Inconel 625. Journal of Manufacturing Processes, 49(May 2019), 135–140.CrossRef
Zurück zum Zitat Ning, J., Wang, W., Zamorano, B., & Liang, S. Y. (2019c). Analytical modeling of lack-of-fusion porosity in metal additive manufacturing. Applied Physics A: Materials Science and Processing, 125(11), 1–11.CrossRef Ning, J., Wang, W., Zamorano, B., & Liang, S. Y. (2019c). Analytical modeling of lack-of-fusion porosity in metal additive manufacturing. Applied Physics A: Materials Science and Processing, 125(11), 1–11.CrossRef
Zurück zum Zitat Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
Zurück zum Zitat Powers, D. M. W. (2011). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. International Journal of Machine Learning Technology, 2(1), 37–63. Powers, D. M. W. (2011). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. International Journal of Machine Learning Technology, 2(1), 37–63.
Zurück zum Zitat Pradel, P., Zhu, Z., Bibb, R., & Moultrie, J. (2018). Investigation of design for additive manufacturing in professional design practice. Journal of Engineering Design, 29(4–5), 165–200.CrossRef Pradel, P., Zhu, Z., Bibb, R., & Moultrie, J. (2018). Investigation of design for additive manufacturing in professional design practice. Journal of Engineering Design, 29(4–5), 165–200.CrossRef
Zurück zum Zitat Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR. arXiv:1511.06434 Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR. arXiv:​1511.​06434
Zurück zum Zitat Ranjan, R., Samant, R., & Anand, S. (2017). Integration of design for manufacturing methods with topology optimization in additive manufacturing. Journal of Manufacturing Science and Engineering, 139(6), 061007.CrossRef Ranjan, R., Samant, R., & Anand, S. (2017). Integration of design for manufacturing methods with topology optimization in additive manufacturing. Journal of Manufacturing Science and Engineering, 139(6), 061007.CrossRef
Zurück zum Zitat Redwood, B., Schöffer, F., & Garret, B. (2017). The 3D printing handbook: Technologies, design and applications. 3D HUBS. Redwood, B., Schöffer, F., & Garret, B. (2017). The 3D printing handbook: Technologies, design and applications. 3D HUBS.
Zurück zum Zitat Salimans, T., Goodfellow, I. J., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training gans. CoRR. arXiv:1606.03498 Salimans, T., Goodfellow, I. J., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training gans. CoRR. arXiv:​1606.​03498
Zurück zum Zitat Scime, L., & Beuth, J. (2018). A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Additive Manufacturing, 24, 273–286.CrossRef Scime, L., & Beuth, J. (2018). A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Additive Manufacturing, 24, 273–286.CrossRef
Zurück zum Zitat Soe, S. P. (2012). Quantitative analysis on SLS part curling using EOS P700 machine. Journal of Materials Processing Technology, 212(11), 2433–2442.CrossRef Soe, S. P. (2012). Quantitative analysis on SLS part curling using EOS P700 machine. Journal of Materials Processing Technology, 212(11), 2433–2442.CrossRef
Zurück zum Zitat Thompson, M. K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R. I., Gibson, I., et al. (2016). Design for additive manufacturing: Trends, opportunities, considerations, and constraints. CIRP Annals, 65(2), 737–760.CrossRef Thompson, M. K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R. I., Gibson, I., et al. (2016). Design for additive manufacturing: Trends, opportunities, considerations, and constraints. CIRP Annals, 65(2), 737–760.CrossRef
Zurück zum Zitat Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11, 3371–3408. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11, 3371–3408.
Zurück zum Zitat Walton, D., & Moztarzadeh, H. (2017). Design and development of an additive manufactured component by topology optimisation. Procedia CIRP, 60, 205–210.CrossRef Walton, D., & Moztarzadeh, H. (2017). Design and development of an additive manufactured component by topology optimisation. Procedia CIRP, 60, 205–210.CrossRef
Zurück zum Zitat Yang, L., Harrysson, O., Cormier, D., West, H., Gong, H., & Stucker, B. (2015). Additive manufacturing of metal cellular structures: Design and fabrication. JOM, 67(3), 608–615.CrossRef Yang, L., Harrysson, O., Cormier, D., West, H., Gong, H., & Stucker, B. (2015). Additive manufacturing of metal cellular structures: Design and fabrication. JOM, 67(3), 608–615.CrossRef
Metadaten
Titel
Semi-supervised deep learning based framework for assessing manufacturability of cellular structures in direct metal laser sintering process
verfasst von
Yilin Guo
Wen Feng Lu
Jerry Ying Hsi Fuh
Publikationsdatum
02.05.2020
Verlag
Springer US
Erschienen in
Journal of Intelligent Manufacturing / Ausgabe 2/2021
Print ISSN: 0956-5515
Elektronische ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-020-01575-0

Weitere Artikel der Ausgabe 2/2021

Journal of Intelligent Manufacturing 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.