Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2016

01.04.2016

Sensory feedback in a bump attractor model of path integration

verfasst von: Daniel B. Poll, Khanh Nguyen, Zachary P. Kilpatrick

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mammalian spatial navigation systems utilize several different sensory information channels. This information is converted into a neural code that represents the animal’s current position in space by engaging place cell, grid cell, and head direction cell networks. In particular, sensory landmark (allothetic) cues can be utilized in concert with an animal’s knowledge of its own velocity (idiothetic) cues to generate a more accurate representation of position than path integration provides on its own (Battaglia et al. The Journal of Neuroscience 24(19):4541–4550 (2004)). We develop a computational model that merges path integration with feedback from external sensory cues that provide a reliable representation of spatial position along an annular track. Starting with a continuous bump attractor model, we explore the impact of synaptic spatial asymmetry and heterogeneity, which disrupt the position code of the path integration process. We use asymptotic analysis to reduce the bump attractor model to a single scalar equation whose potential represents the impact of asymmetry and heterogeneity. Such imperfections cause errors to build up when the network performs path integration, but these errors can be corrected by an external control signal representing the effects of sensory cues. We demonstrate that there is an optimal strength and decay rate of the control signal when cues appear either periodically or randomly. A similar analysis is performed when errors in path integration arise from dynamic noise fluctuations. Again, there is an optimal strength and decay of discrete control that minimizes the path integration error.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aikath, D., Weible, A.P., Rowland, D.C., & Kentros, C.G. (2014). Role of self-generated odor cues in contextual representation. Hippocampus, 24(8), 1039–51.CrossRefPubMedPubMedCentral Aikath, D., Weible, A.P., Rowland, D.C., & Kentros, C.G. (2014). Role of self-generated odor cues in contextual representation. Hippocampus, 24(8), 1039–51.CrossRefPubMedPubMedCentral
Zurück zum Zitat Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27(2), 77–87.CrossRefPubMed Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27(2), 77–87.CrossRefPubMed
Zurück zum Zitat Battaglia, F.P., Sutherland, G.R., & McNaughton, B.L. (2004). Local sensory cues and place cell directionality: additional evidence of prospective coding in the hippocampus. The Journal of Neuroscience, 24(19), 4541–4550.CrossRefPubMed Battaglia, F.P., Sutherland, G.R., & McNaughton, B.L. (2004). Local sensory cues and place cell directionality: additional evidence of prospective coding in the hippocampus. The Journal of Neuroscience, 24(19), 4541–4550.CrossRefPubMed
Zurück zum Zitat Bressloff, P.C. (2001). Traveling fronts and wave propagation failure in an inhomogeneous neural network. Physica D: Nonlinear Phenomena, 155(1), 83–100.CrossRef Bressloff, P.C. (2001). Traveling fronts and wave propagation failure in an inhomogeneous neural network. Physica D: Nonlinear Phenomena, 155(1), 83–100.CrossRef
Zurück zum Zitat Bressloff, P.C. (2009). Stochastic neural field theory and the system-size expansion. SIAM Journal on Applied Mathematics, 70(5), 1488–1521.CrossRef Bressloff, P.C. (2009). Stochastic neural field theory and the system-size expansion. SIAM Journal on Applied Mathematics, 70(5), 1488–1521.CrossRef
Zurück zum Zitat Bressloff, P.C. (2012). Spatiotemporal dynamics of continuum neural fields. Journal of Physics A: Mathematical and Theoretical, 45(3), 033,001.CrossRef Bressloff, P.C. (2012). Spatiotemporal dynamics of continuum neural fields. Journal of Physics A: Mathematical and Theoretical, 45(3), 033,001.CrossRef
Zurück zum Zitat Bressloff, P.C., & Kilpatrick, Z.P. (2015). Nonlinear langevin equations for wandering patterns in stochastic neural fields. SIAM Journal on Applied Dynamical Systems, 14(1), 305–334.CrossRef Bressloff, P.C., & Kilpatrick, Z.P. (2015). Nonlinear langevin equations for wandering patterns in stochastic neural fields. SIAM Journal on Applied Dynamical Systems, 14(1), 305–334.CrossRef
Zurück zum Zitat Bressloff, P.C., & Webber, M.A. (2012). Front propagation in stochastic neural fields. SIAM Journal on Applied Dynamical Systems, 11(2), 708–740.CrossRef Bressloff, P.C., & Webber, M.A. (2012). Front propagation in stochastic neural fields. SIAM Journal on Applied Dynamical Systems, 11(2), 708–740.CrossRef
Zurück zum Zitat Brody, C.D., Romo, R., & Kepecs, A. (2003). Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Current opinion in neurobiology, 13(2), 204–211.CrossRefPubMed Brody, C.D., Romo, R., & Kepecs, A. (2003). Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Current opinion in neurobiology, 13(2), 204–211.CrossRefPubMed
Zurück zum Zitat Burak, Y., & Fiete, I.R. (2009). Accurate path integration in continuous attractor network models of grid cells. PLoS Computational Biology, 5(2), e1000,291.CrossRef Burak, Y., & Fiete, I.R. (2009). Accurate path integration in continuous attractor network models of grid cells. PLoS Computational Biology, 5(2), e1000,291.CrossRef
Zurück zum Zitat Burak, Y., & Fiete, I.R. (2012). Fundamental limits on persistent activity in networks of noisy neurons. Proceedings of the National Academy of Sciences of the United States of America, 109(43), 17,645–50. doi:10.1073/pnas.1117386109.CrossRef Burak, Y., & Fiete, I.R. (2012). Fundamental limits on persistent activity in networks of noisy neurons. Proceedings of the National Academy of Sciences of the United States of America, 109(43), 17,645–50. doi:10.​1073/​pnas.​1117386109.CrossRef
Zurück zum Zitat Cochran, W.W., Mouritsen, H., & Wikelski, M. (2004). Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science, 304(5669), 405–408.CrossRefPubMed Cochran, W.W., Mouritsen, H., & Wikelski, M. (2004). Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science, 304(5669), 405–408.CrossRefPubMed
Zurück zum Zitat Collett, T.S., & Graham, P. (2004). Animal navigation: path integration, visual landmarks and cognitive maps. Current Biology, 14(12), R475–R477.CrossRefPubMed Collett, T.S., & Graham, P. (2004). Animal navigation: path integration, visual landmarks and cognitive maps. Current Biology, 14(12), R475–R477.CrossRefPubMed
Zurück zum Zitat Compte, A., Brunel, N., Goldman-Rakic, P.S., & Wang, X.J. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cerebral Cortex, 10(9), 910–923.CrossRefPubMed Compte, A., Brunel, N., Goldman-Rakic, P.S., & Wang, X.J. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cerebral Cortex, 10(9), 910–923.CrossRefPubMed
Zurück zum Zitat Coombes, S., & Laing, C. (2011). Pulsating fronts in periodically modulated neural field models. Physical Review E, 83(1), 011, 912.CrossRef Coombes, S., & Laing, C. (2011). Pulsating fronts in periodically modulated neural field models. Physical Review E, 83(1), 011, 912.CrossRef
Zurück zum Zitat Deneve, S., Latham, P.E., & Pouget, A. (1999). Reading population codes: a neural implementation of ideal observers. Nature neuroscience, 2(8), 740–745.CrossRefPubMed Deneve, S., Latham, P.E., & Pouget, A. (1999). Reading population codes: a neural implementation of ideal observers. Nature neuroscience, 2(8), 740–745.CrossRefPubMed
Zurück zum Zitat Deshmukh, S.S., & Knierim, J.J. (2011). Representation of non-spatial and spatial information in the lateral entorhinal cortex. Frontiers in Behavioral Neuroscience, 5, 69.CrossRefPubMedPubMedCentral Deshmukh, S.S., & Knierim, J.J. (2011). Representation of non-spatial and spatial information in the lateral entorhinal cortex. Frontiers in Behavioral Neuroscience, 5, 69.CrossRefPubMedPubMedCentral
Zurück zum Zitat Ermentrout, B. (1998). Neural networks as spatio-temporal pattern-forming systems. Reports on progress in physics, 61(4), 353.CrossRef Ermentrout, B. (1998). Neural networks as spatio-temporal pattern-forming systems. Reports on progress in physics, 61(4), 353.CrossRef
Zurück zum Zitat Etienne, A.S., Maurer, R., & Séguinot, V. (1996). Path integration in mammals and its interaction with visual landmarks. The Journal of Experimental Biology, 199(1), 201–209.PubMed Etienne, A.S., Maurer, R., & Séguinot, V. (1996). Path integration in mammals and its interaction with visual landmarks. The Journal of Experimental Biology, 199(1), 201–209.PubMed
Zurück zum Zitat Gardiner, C.W. (2004). Handbook of stochastic methods for physics, chemistry, and the natural sciences, 3rd edn. Berlin: Springer-Verlag.CrossRef Gardiner, C.W. (2004). Handbook of stochastic methods for physics, chemistry, and the natural sciences, 3rd edn. Berlin: Springer-Verlag.CrossRef
Zurück zum Zitat Geva-Sagiv, M., Las, L., Yovel, Y., & Ulanovsky, N. (2015). Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nature Reviews Neuroscience, 16(2), 94–108.CrossRefPubMed Geva-Sagiv, M., Las, L., Yovel, Y., & Ulanovsky, N. (2015). Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nature Reviews Neuroscience, 16(2), 94–108.CrossRefPubMed
Zurück zum Zitat Hansel, D., & Mato, G. (2013). Short-term plasticity explains irregular persistent activity in working memory tasks. The Journal of Neuroscience, 33(1), 133–149.CrossRefPubMed Hansel, D., & Mato, G. (2013). Short-term plasticity explains irregular persistent activity in working memory tasks. The Journal of Neuroscience, 33(1), 133–149.CrossRefPubMed
Zurück zum Zitat Hardcastle, K., Ganguli, S., & Giocomo, L.M. (2015). Environmental boundaries as an error correction mechanism for grid cells. Neuron, 86(3), 827–39.CrossRefPubMed Hardcastle, K., Ganguli, S., & Giocomo, L.M. (2015). Environmental boundaries as an error correction mechanism for grid cells. Neuron, 86(3), 827–39.CrossRefPubMed
Zurück zum Zitat Hasselmo, M.E., & Brandon, M.P. (2012). A model combining oscillations and attractor dynamics for generation of grid cell firing. Front Neural Circuits, 6, 30.CrossRefPubMedPubMedCentral Hasselmo, M.E., & Brandon, M.P. (2012). A model combining oscillations and attractor dynamics for generation of grid cell firing. Front Neural Circuits, 6, 30.CrossRefPubMedPubMedCentral
Zurück zum Zitat Itskov, V., Hansel, D., & Tsodyks, M. (2011). Short-term facilitation may stabilize parametric working memory trace. Frontiers in computational neuroscience, 5. Itskov, V., Hansel, D., & Tsodyks, M. (2011). Short-term facilitation may stabilize parametric working memory trace. Frontiers in computational neuroscience, 5.
Zurück zum Zitat Jezek, K., Henriksen, E.J., Treves, A., Moser, E.I., & Moser, M.B. (2011). Theta-paced flickering between place-cell maps in the hippocampus. Nature, 478(7368), 246–249.CrossRefPubMed Jezek, K., Henriksen, E.J., Treves, A., Moser, E.I., & Moser, M.B. (2011). Theta-paced flickering between place-cell maps in the hippocampus. Nature, 478(7368), 246–249.CrossRefPubMed
Zurück zum Zitat Kilpatrick, Z.P. (2013). Short term synaptic depression improves information transfer in perceptual multistability. Frontiers in Computational Neuroscience, 7, 85.PubMedPubMedCentral Kilpatrick, Z.P. (2013). Short term synaptic depression improves information transfer in perceptual multistability. Frontiers in Computational Neuroscience, 7, 85.PubMedPubMedCentral
Zurück zum Zitat Kilpatrick, Z.P., & Ermentrout, B. (2013). Wandering bumps in stochastic neural fields. SIAM Journal on Applied Dynamical Systems, 12(1), 61–94.CrossRef Kilpatrick, Z.P., & Ermentrout, B. (2013). Wandering bumps in stochastic neural fields. SIAM Journal on Applied Dynamical Systems, 12(1), 61–94.CrossRef
Zurück zum Zitat Kilpatrick, Z.P., Folias, S.E., & Bressloff, P.C. (2008). Traveling pulses and wave propagation failure in inhomogeneous neural media. SIAM Journal on Applied Dynamical Systems, 7(1), 161–185.CrossRef Kilpatrick, Z.P., Folias, S.E., & Bressloff, P.C. (2008). Traveling pulses and wave propagation failure in inhomogeneous neural media. SIAM Journal on Applied Dynamical Systems, 7(1), 161–185.CrossRef
Zurück zum Zitat Kilpatrick, Z.P., Ermentrout, B., & Doiron, B. (2013). Optimizing working memory with heterogeneity of recurrent cortical excitation. The Journal of Neuroscience, 33(48), 18,999–19,011.CrossRef Kilpatrick, Z.P., Ermentrout, B., & Doiron, B. (2013). Optimizing working memory with heterogeneity of recurrent cortical excitation. The Journal of Neuroscience, 33(48), 18,999–19,011.CrossRef
Zurück zum Zitat Knierim, J.J., Kudrimoti, H.S., & McNaughton, B.L. (1995). Place cells, head direction cells, and the learning of landmark stability. The Journal of Neuroscience, 15(3), 1648–1659.PubMed Knierim, J.J., Kudrimoti, H.S., & McNaughton, B.L. (1995). Place cells, head direction cells, and the learning of landmark stability. The Journal of Neuroscience, 15(3), 1648–1659.PubMed
Zurück zum Zitat Laing, C.R., & Chow, C.C. (2001). Stationary bumps in networks of spiking neurons. Neural Computation, 13(7), 1473–1494.CrossRefPubMed Laing, C.R., & Chow, C.C. (2001). Stationary bumps in networks of spiking neurons. Neural Computation, 13(7), 1473–1494.CrossRefPubMed
Zurück zum Zitat McNaughton, B., Chen, L., & Markus, E. (1991). Dead reckoning, landmark learning, and the sense of direction: a neurophysiological and computational hypothesis. Journal of Cognitive Neuroscience, 3(2), 190–202.CrossRefPubMed McNaughton, B., Chen, L., & Markus, E. (1991). Dead reckoning, landmark learning, and the sense of direction: a neurophysiological and computational hypothesis. Journal of Cognitive Neuroscience, 3(2), 190–202.CrossRefPubMed
Zurück zum Zitat McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I., & Moser, M.B. (2006). Path integration and the neural basis of the ’cognitive map’. Nature Reviews Neuroscience, 7(8), 663–78. doi:10.1038/nrn1932.CrossRefPubMed McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I., & Moser, M.B. (2006). Path integration and the neural basis of the ’cognitive map’. Nature Reviews Neuroscience, 7(8), 663–78. doi:10.​1038/​nrn1932.CrossRefPubMed
Zurück zum Zitat O’Keefe, J., & Burgess, N. (1996). Geometric determinants of the place fields of hippocampal neurons. Nature, 381(6581), 425–8.CrossRefPubMed O’Keefe, J., & Burgess, N. (1996). Geometric determinants of the place fields of hippocampal neurons. Nature, 381(6581), 425–8.CrossRefPubMed
Zurück zum Zitat Panja, D. (2004). Effects of fluctuations on propagating fronts. Physics Reports, 393(2), 87–174.CrossRef Panja, D. (2004). Effects of fluctuations on propagating fronts. Physics Reports, 393(2), 87–174.CrossRef
Zurück zum Zitat Pfeiffer, B.E., & Foster, D.J. (2015). Autoassociative dynamics in the generation of sequences of hippocampal place cells. Science, 349(6244), 180–183.CrossRefPubMed Pfeiffer, B.E., & Foster, D.J. (2015). Autoassociative dynamics in the generation of sequences of hippocampal place cells. Science, 349(6244), 180–183.CrossRefPubMed
Zurück zum Zitat Renart, A., Song, P., & Wang, X.J. (2003). Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron, 38(3), 473–485.CrossRefPubMed Renart, A., Song, P., & Wang, X.J. (2003). Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron, 38(3), 473–485.CrossRefPubMed
Zurück zum Zitat Ribrault, C., Sekimoto, K., & Triller, A. (2011). From the stochasticity of molecular processes to the variability of synaptic transmission. Nature Reviews Neuroscience, 12(7), 375–387.CrossRefPubMed Ribrault, C., Sekimoto, K., & Triller, A. (2011). From the stochasticity of molecular processes to the variability of synaptic transmission. Nature Reviews Neuroscience, 12(7), 375–387.CrossRefPubMed
Zurück zum Zitat Sagués, F., Sancho, J.M., & García-Ojalvo, J. (2007). Spatiotemporal order out of noise. Reviews of Modern Physics, 79(3), 829.CrossRef Sagués, F., Sancho, J.M., & García-Ojalvo, J. (2007). Spatiotemporal order out of noise. Reviews of Modern Physics, 79(3), 829.CrossRef
Zurück zum Zitat Samsonovich, A., & McNaughton, B.L. (1997). Path integration and cognitive mapping in a continuous attractor neural network model. Journal of Neuroscience, 17(15), 5900–20.PubMed Samsonovich, A., & McNaughton, B.L. (1997). Path integration and cognitive mapping in a continuous attractor neural network model. Journal of Neuroscience, 17(15), 5900–20.PubMed
Zurück zum Zitat Save, E., Nerad, L., & Poucet, B. (2000). Contribution of multiple sensory information to place field stability in hippocampal place cells. Hippocampus, 10, 64–76.CrossRefPubMed Save, E., Nerad, L., & Poucet, B. (2000). Contribution of multiple sensory information to place field stability in hippocampal place cells. Hippocampus, 10, 64–76.CrossRefPubMed
Zurück zum Zitat Slotine, J., & Li, W. (1991). Applied Nonlinear Control: Prentice Hall. Slotine, J., & Li, W. (1991). Applied Nonlinear Control: Prentice Hall.
Zurück zum Zitat Solstad, T., Boccara, C.N., Kropff, E., Moser, M.B., & Moser, E.I. (2008). Representation of geometric borders in the entorhinal cortex. Science, 322(5909), 1865–8.CrossRefPubMed Solstad, T., Boccara, C.N., Kropff, E., Moser, M.B., & Moser, E.I. (2008). Representation of geometric borders in the entorhinal cortex. Science, 322(5909), 1865–8.CrossRefPubMed
Zurück zum Zitat Sreenivasan, S., & Fiete, I. (2011). Grid cells generate an analog error-correcting code for singularly precise neural computation. Nature neuroscience, 14(10), 1330–1337.CrossRefPubMed Sreenivasan, S., & Fiete, I. (2011). Grid cells generate an analog error-correcting code for singularly precise neural computation. Nature neuroscience, 14(10), 1330–1337.CrossRefPubMed
Zurück zum Zitat Tsao, A., Moser, M.B., & Moser, E.I. (2013). Traces of experience in the lateral entorhinal cortex. Current Biology, 23(5), 399–405.CrossRefPubMed Tsao, A., Moser, M.B., & Moser, E.I. (2013). Traces of experience in the lateral entorhinal cortex. Current Biology, 23(5), 399–405.CrossRefPubMed
Zurück zum Zitat Valerio, S., & Taube, J.S. (2012). Path integration: how the head direction signal maintains and corrects spatial orientation. Nature neuroscience, 15(10), 1445–1453.CrossRefPubMedPubMedCentral Valerio, S., & Taube, J.S. (2012). Path integration: how the head direction signal maintains and corrects spatial orientation. Nature neuroscience, 15(10), 1445–1453.CrossRefPubMedPubMedCentral
Zurück zum Zitat Wang, X.J. (1999). Synaptic basis of cortical persistent activity: the importance of nmda receptors to working memory. The Journal of Neuroscience, 19(21), 9587–9603.PubMed Wang, X.J. (1999). Synaptic basis of cortical persistent activity: the importance of nmda receptors to working memory. The Journal of Neuroscience, 19(21), 9587–9603.PubMed
Zurück zum Zitat Welday, A.W., Shlifer, I.G., Bloom, M.L., Zhang, K., & BH, T. (2011). Cosine directional tuning of theta cell burst frequencies: Evidence for spatial coding by oscillatory interference. Journal of Neuroscience, 16, 16,157–16,176.CrossRef Welday, A.W., Shlifer, I.G., Bloom, M.L., Zhang, K., & BH, T. (2011). Cosine directional tuning of theta cell burst frequencies: Evidence for spatial coding by oscillatory interference. Journal of Neuroscience, 16, 16,157–16,176.CrossRef
Zurück zum Zitat Wills, T.J., Lever, C., Cacucci, F., Burgess, N., & O’Keefe, J. (2005). Attractor dynamics in the hippocampal representation of the local environment. Science, 308, 873–876.CrossRefPubMedPubMedCentral Wills, T.J., Lever, C., Cacucci, F., Burgess, N., & O’Keefe, J. (2005). Attractor dynamics in the hippocampal representation of the local environment. Science, 308, 873–876.CrossRefPubMedPubMedCentral
Zurück zum Zitat Wilson, H.R., & Cowan, J.D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2), 55–80.CrossRefPubMed Wilson, H.R., & Cowan, J.D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2), 55–80.CrossRefPubMed
Zurück zum Zitat Wu, L.Q., & Dickman, J.D. (2012). Neural correlates of a magnetic sense. Science, 336(6084), 1054–1057.CrossRefPubMed Wu, L.Q., & Dickman, J.D. (2012). Neural correlates of a magnetic sense. Science, 336(6084), 1054–1057.CrossRefPubMed
Zurück zum Zitat Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. Journal of Neuroscience, 16(6), 2112–26.PubMed Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. Journal of Neuroscience, 16(6), 2112–26.PubMed
Zurück zum Zitat Zhang, S., Schönfeld, F., Wiskott, L., & Manahan-Vaughan, D. (2014). Spatial representations of place cells in darkness are supported by path integration and border information. Frontiers in Behavioral Neuroscience, 8, 222.PubMedPubMedCentral Zhang, S., Schönfeld, F., Wiskott, L., & Manahan-Vaughan, D. (2014). Spatial representations of place cells in darkness are supported by path integration and border information. Frontiers in Behavioral Neuroscience, 8, 222.PubMedPubMedCentral
Metadaten
Titel
Sensory feedback in a bump attractor model of path integration
verfasst von
Daniel B. Poll
Khanh Nguyen
Zachary P. Kilpatrick
Publikationsdatum
01.04.2016
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2016
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-015-0588-y

Weitere Artikel der Ausgabe 2/2016

Journal of Computational Neuroscience 2/2016 Zur Ausgabe

Premium Partner