Skip to main content

2020 | OriginalPaper | Buchkapitel

Sequences of Refinements of Rough Sets: Logical and Algebraic Aspects

verfasst von : Stefania Boffa, Brunella Gerla

Erschienen in: Transactions on Rough Sets XXII

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this thesis, a generalization of the classical Rough set theory [83] is developed considering the so-called sequences of orthopairs that we define in [20] as special sequences of rough sets.

Mainly, our aim is to introduce some operations between sequences of orthopairs, and to discover how to generate them starting from the operations concerning standard rough sets (defined in [32]). Also, we prove several representation theorems representing the class of finite centered Kleene algebras with the interpolation property [31], and some classes of finite residuated lattices (more precisely, we consider Nelson algebras [87], Nelson lattices [23], IUML-algebras [73] and Kleene lattice with implication [27]) as sequences of orthopairs.

Moreover, as an application, we show that a sequence of orthopairs can be used to represent an examiner’s opinion on a number of candidates applying for a job, and we show that opinions of two or more examiners can be combined using operations between sequences of orthopairs in order to get a final decision on each candidate.

Finally, we provide the original modal logic \(SO_n\) with semantics based on sequences of orthopairs, and we employ it to describe the knowledge of an agent that increases over time, as new information is provided. Modal logic \(SO_n\) is characterized by the sequences \((\square _1, \ldots , \square _n)\) and \((\bigcirc _1, \ldots , \bigcirc _n)\) of n modal operators corresponding to a sequence \((t_1, \ldots , t_n)\) of consecutive times. Furthermore, the operator \(\square _i\) of \((\square _1, \ldots , \square _n)\) represents the knowledge of an agent at time \(t_i\), and it coincides with the necessity modal operator of S5 logic [29]. On the other hand, the main innovative aspect of modal logic \(SO_n\) is the presence of the sequence \((\bigcirc _1, \ldots , \bigcirc _n)\), since \(\bigcirc _i\) establishes whether an agent is interested in knowing a given fact at time \(t_i\).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1

The equivalence relations coming from the same region and coming from the same city are defined on proper subsets of U, for there are missing data for some users.

 
2

We exclude the operations \(\odot _4\) and \(\hookrightarrow _4\), since they can not be obtained starting from operations between the orthopairs.

 
3

By Preposition 15, \(\square _i \varphi \wedge \square _i \psi = \square _i (\varphi \wedge \psi )\).

 
4

By Preposition 15, \(\triangle _i \varphi \wedge \triangle _i \psi = \triangle _i(\varphi \vee \psi )\).

 
5

Observe that this expression is equivalent to \((\square _i \varphi \setminus \triangle _i \psi \ \wedge \ \square _i \psi \setminus \triangle _i \varphi )\).

 
Literatur
  1. Aguzzoli, S., Boffa, S., Ciucci, D., Gerla, B.: Refinements of orthopairs and IUML-algebras. In: Flores, V., et al. (eds.) IJCRS 2016. LNCS (LNAI), vol. 9920, pp. 87–96. Springer, Cham (2016). https://​doi.​org/​10.​1007/​978-3-319-47160-0_​8View Article
  2. Aguzzoli, S., Boffa, S., Ciucci, D., Gerla, B.: Finite iuml-algebras, finite forests and orthopairs. Fundamenta Informaticae 163, 139–163 (2018)MathSciNetMATHView Article
  3. Aguzzoli, S., Flaminio, T., Marchioni, E.: Finite forests. Their algebras and logics, pp. 139–163 (2018)
  4. Ahn, B., Cho, S., Kim, C.: The integrated methodology of rough set theory and artificial neural network for business failure prediction. Expert Syst. Appl. 18(2), 65–74 (2000)View Article
  5. Atanassov, K., Gargov, G.: Elements of intuitionistic fuzzy logic. Part i. Fuzzy Sets Syst. 95(1), 39–52 (1998)MATHView Article
  6. Aumann, R.J.: Agreeing to disagree. Ann. Stat. 1236–1239 (1976)
  7. Bacharach, M., Gerard-Varet, L.A., Mongin, P., Shin, H.S.: Epistemic Logic and the Theory of Games and Decisions, vol. 20. Springer, Heidelberg (2012). https://​doi.​org/​10.​1007/​978-1-4613-1139-3View ArticleMATH
  8. Banerjee, M., Chakraborty, M.K.: Rough consequence and rough algebra. In: Ziarko, W.P. (ed.) Rough Sets, Fuzzy Sets and Knowledge Discovery. Workshops in Computin, pp. 196–207. Springer, Heidelberg (1994). https://​doi.​org/​10.​1007/​978-1-4471-3238-7_​24View Article
  9. Banerjee, M., Chakraborty, M.K.: Algebras from rough sets (2004)
  10. Belohlavek, R.: What is a fuzzy concept lattice? II. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS (LNAI), vol. 6743, pp. 19–26. Springer, Heidelberg (2011). https://​doi.​org/​10.​1007/​978-3-642-21881-1_​4View Article
  11. Bezhanishvili, N., Gehrke, M.: Free Heyting algebras: revisited. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 251–266. Springer, Heidelberg (2009). https://​doi.​org/​10.​1007/​978-3-642-03741-2_​18View Article
  12. Bialynicki-Birula, A., Rasiowa, H.: On the representation of quasi-Boolean algebras (1957)
  13. Bianchi, M.: A temporal semantics for nilpotent minimum logic. Int. J. Approx. Reason. 55(1), 391–401 (2014)MathSciNetMATHView Article
  14. Birkhoff, G.: Lattice Theory, vol. 25. American Mathematical Society (1940)
  15. Birkhoff, G., et al.: Rings of sets. Duke Math. J. 3(3), 443–454 (1937)MathSciNetMATHView Article
  16. Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic: Graph. Darst, vol. 53. Cambridge University Press, Cambridge (2002)MATH
  17. Boffa, S., De Maio, C., Di Nola, A., Fenza, G., Ferraioli, A.R., Loia, V.: Unifying fuzzy concept lattice construction methods. In: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 209–216. IEEE (2016)
  18. Boffa, S., De Maio, C., Gerla, B., Parente, M.: Context-aware advertisment recommendation on twitter through rough sets. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2018)
  19. Boffa, S., Gerla, B.: Sequences of orthopairs given by refinements of coverings. In: Petrosino, A., Loia, V., Pedrycz, W. (eds.) WILF 2016. LNCS (LNAI), vol. 10147, pp. 95–105. Springer, Cham (2017). https://​doi.​org/​10.​1007/​978-3-319-52962-2_​8View Article
  20. Boffa, S., Gerla, B.: Kleene algebras as sequences of orthopairs. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K.T., Krawczak, M. (eds.) IWIFSGN/EUSFLAT -2017. AISC, vol. 641, pp. 235–248. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-319-66830-7_​22View Article
  21. Boffa, S., Gerla, B.: How to merge opinions by using operations between sequences of orthopairs. In: 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE (2019)
  22. Brignole, D., Monteiro, A.: Caracterisation des algèbres de nelson par des egalités. I. Proce. Japan Acad. 43(4), 279–283 (1967)MATHView Article
  23. Busaniche, M., Cignoli, R.: Constructive logic with strong negation as a substructural logic. J. Logic Comput. 20(4), 761–793 (2008)MathSciNetMATHView Article
  24. Calegari, S., Ciucci, D.: Granular computing applied to ontologies. Int. J. Approx. Reason. 51(4), 391–409 (2010)MATHView Article
  25. Campagner, A., Ciucci, D.: Three-way and semi-supervised decision tree learning based on orthopartitions. In: Medina, J., et al. (eds.) IPMU 2018. CCIS, vol. 854, pp. 748–759. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-319-91476-3_​61View Article
  26. Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications. Wiley, Hoboken (2004)MATHView Article
  27. Castiglioni, J.L., Celani, S.A., San Martín, H.J.: Kleene algebras with implication. Algebra Universalis 77(4), 375–393 (2017). https://​doi.​org/​10.​1007/​s00012-017-0433-4MathSciNetView ArticleMATH
  28. Celani, S.: Bounded distributive lattices with fusion and implication. Southeast Asian Bull. Math. 28(6) (2004)
  29. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)MATHView Article
  30. Cignoli, R.: Injective De Morgan and Kleene algebras. In: Proceedings of the American Mathematical Society, pp. 269–278 (1975)
  31. Cignoli, R.: The class of Kleene algebras satisfying an interpolation property and nelson algebras. Algebra Universalis 23(3), 262–292 (1986). https://​doi.​org/​10.​1007/​BF01230621MathSciNetView ArticleMATH
  32. Ciucci, D.: Orthopairs: a simple and widely used way to model uncertainty. Fundamenta Informaticae 108(3–4), 287–304 (2011)MathSciNetMATHView Article
  33. Ciucci, D.: Orthopairs and granular computing. Granul. Comput. 1(3), 159–170 (2016). https://​doi.​org/​10.​1007/​s41066-015-0013-yView Article
  34. Ciucci, D., Dubois, D.: Three-valued logics, uncertainty management and rough sets. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets XVII. LNCS, vol. 8375, pp. 1–32. Springer, Heidelberg (2014). https://​doi.​org/​10.​1007/​978-3-642-54756-0_​1View ArticleMATH
  35. Ciucci, D., Mihálydeák, T., Csajbók, Z.E.: On definability and approximations in partial approximation spaces. In: Miao, D., Pedrycz, W., Ślȩzak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS (LNAI), vol. 8818, pp. 15–26. Springer, Cham (2014). https://​doi.​org/​10.​1007/​978-3-319-11740-9_​2View ArticleMATH
  36. Ciucci, D., Yao, Y.: Advances in rough set theory (2011)
  37. Crawford, J.M., Etherington, D.W.: A non-deterministic semantics for tractable inference. In: AAAI/IAAI, pp. 286–291 (1998)
  38. Cresswell, M.J., Hughes, G.E.: A New Introduction to Modal Logic. Routledge, Abingdon (2012)MATHView Article
  39. Csajbók, Z.: Approximation of sets based on partial covering. Theoret. Comput. Sci. 412(42), 5820–5833 (2011)MathSciNetMATHView Article
  40. Dai, J.H.: Rough 3-valued algebras. Inf. Sci. 178(8), 1986–1996 (2008)MathSciNetMATHView Article
  41. De Maio, C., Boffa, S.: Discovery of interesting users in twitter by using rough sets. In: Park, J.J., Loia, V., Choo, K.-K.R., Yi, G. (eds.) MUE/FutureTech -2018. LNEE, vol. 518, pp. 671–677. Springer, Singapore (2019). https://​doi.​org/​10.​1007/​978-981-13-1328-8_​86View Article
  42. Ditmarsch, H., Halpern, J.Y., van der Hoek, W., Kooi, B.P.: Handbook of Epistemic Logic. College Publications, London (2015)MATH
  43. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gener. Syst. 17(2–3), 191–209 (1990)MATHView Article
  44. Dubois, D., Prade, H., Schockaert, S.: Generalized possibilistic logic: foundations and applications to qualitative reasoning about uncertainty. Artif. Intell. 252, 139–174 (2017)MathSciNetMATHView Article
  45. Dwinger, P., Balbes, R.: Distributive lattices (1974)
  46. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT Press, Cambridge (2004)MATHView Article
  47. Fidel, M.M.: An algebraic study of a propositional system of Nelson. Bull. Sect. Logic 7(2), 89 (1978)MathSciNetMATH
  48. Friedl, M.A., Brodley, C.E.: Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 61(3), 399–409 (1997)View Article
  49. Fussner, W., Galatos, N.: Categories of models of r-mingle. arXiv preprint arXiv:​1710.​04256 (2017)
  50. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (2012). https://​doi.​org/​10.​1007/​978-3-642-59830-2View ArticleMATH
  51. Garson, J.: Modal logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, fall 2018 edn. (2018)
  52. Golan, R.H., Ziarko, W.: A methodology for stock market analysis utilizing rough set theory. In: Proceedings of the IEEE/IAFE Computational Intelligence for Financial Engineering, pp. 32–40. IEEE (1995)
  53. Grätzer, G., Wehrung, F.: Lattice Theory: Special Topics and Applications. Springer, Heidelberg (2016). https://​doi.​org/​10.​1007/​978-3-319-44236-5View ArticleMATH
  54. Grzymala-Busse, J.W.: LERS-A system for learning from examples based on rough sets. In: Słowiński, R. (ed.) Intelligent Decision Support. Series D: System Theory, Knowledge Engineering and Problem Solving, pp. 3–18. Springer, Heidelberg (1992). https://​doi.​org/​10.​1007/​978-94-015-7975-9_​1View Article
  55. Haack, S.: Philosophy of Logics. Cambridge University Press, Cambridge (1978)MATHView Article
  56. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed environment. J. ACM (JACM) 37, 549–587 (1990)MathSciNetMATHView Article
  57. Hendricks, V.: New waves in epistemology (2008)
  58. Hintikka, J.: Knowledge and Belief. An Introduction to the Logic of the Two Notions (1965)
  59. Holliday, W.H.: Epistemic logic and epistemology. In: Hansson, S.O., Hendricks, V.F. (eds.) Introduction to Formal Philosophy. SUTP, pp. 351–369. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-319-77434-3_​17View Article
  60. Järvinen, J.: Knowledge representation and rough sets. Turku Centre for Computer Science (1999)
  61. Järvinen, J., Radeleczki, S.: Rough sets determined by tolerances. Int. J. Approx. Reason. 55(6), 1419–1438 (2014)MathSciNetMATHView Article
  62. Järvinen, J., Radeleczki, S.: Representing regular pseudo complemented Kleene algebras by tolerance-based rough sets. J. Aust. Math. Soc. 105(1), 57–78 (2018)MathSciNetMATHView Article
  63. Kalman, J.A.: Lattices with involution. Trans. Am. Math. Soc. 87(2), 485–491 (1958)MathSciNetMATHView Article
  64. Krajicek, J., Krajíček, J., et al.: Bounded Arithmetic, Propositional Logic and Complexity Theory. Cambridge University Press, Cambridge (1995)MATHView Article
  65. Krysiński, J.: Rough sets approach to the analysis of the structure-activity relationship of quaternary imidazolium compounds. Arzneimittelforschung 40(7), 795–799 (1990)
  66. Kryszkiewicz, M.: Rules in incomplete information systems. Inf. Sci. 113(3–4), 271–292 (1999)MathSciNetMATHView Article
  67. Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM J. Comput. 6(3), 467–480 (1977)MathSciNetMATHView Article
  68. Lewis, C.I., Langford, C.H., Lamprecht, P.: Symbolic Logic. Dover Publications, New York (1959)
  69. Liau, C.-J.: Modal reasoning and rough set theory. In: Giunchiglia, F. (ed.) AIMSA 1998. LNCS, vol. 1480, pp. 317–330. Springer, Heidelberg (1998). https://​doi.​org/​10.​1007/​BFb0057455View Article
  70. Lin, G., Liang, J., Qian, Y.: Multigranulation rough sets: from partition to covering. Inf. Sci. 241, 101–118 (2013)MathSciNetMATHView Article
  71. Lin, T.Y., Liu, Q.: Rough approximate operators: axiomatic rough set theory. In: Ziarko, W.P. (ed.) Rough Sets, Fuzzy Sets and Knowledge Discovery. Workshops in Computing, pp. 256–260. Springer, Heidelberg (1994). https://​doi.​org/​10.​1007/​978-1-4471-3238-7_​31View Article
  72. Liu, Y., Xu, J., Sun, L., Du, L.: Decisions tree learning method based on three-way decisions. In: Yao, Y., Hu, Q., Yu, H., Grzymala-Busse, J.W. (eds.) RSFDGrC 2015. LNCS (LNAI), vol. 9437, pp. 389–400. Springer, Cham (2015). https://​doi.​org/​10.​1007/​978-3-319-25783-9_​35View Article
  73. Metcalfe, G., Montagna, F.: Substructural fuzzy logics. J. Symb. Logic 72(3), 834–864 (2007)MathSciNetMATHView Article
  74. Moisil, G.C.: Recherches sur l’algèbre de la logique. Ann. Sci. Univ. Jassy 22, 1–117 (1935)
  75. Monteiro, A.: Matrices de morgan caractéristiques pour le calcul propositionnel classique (1963)
  76. Monteiro, A.: Construction des algébres de Nelson finies. Univ. (1964)
  77. Mrozek, A.: Rough sets and some aspects of expert systems realigation. The 7th International Workshop on Expert Systems and Application (1987)
  78. Nation, J.B.: Notes on lattice theory. In: Cambridge Studies in Advanced Mathematics, vol. 60 (1998)
  79. Orlowska, E.: A logic of indiscernibility relations. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 177–186. Springer, Heidelberg (1985). https://​doi.​org/​10.​1007/​3-540-16066-3_​17View Article
  80. Orlowska, E.: Logical aspects of learning concepts. Int. J. Approx. Reason. 2(4), 349–364 (1988)MATHView Article
  81. Pagliani, P.: Rough set theory and logic-algebraic structures. In: Orlowska, E. (ed.) Incomplete information: Rough set analysis. Studies in Fuzziness and Soft Computing, vol. 13, pp. 109–190. Springer, Heidelberg (1998). https://​doi.​org/​10.​1007/​978-3-7908-1888-8_​6View Article
  82. Pal, S.K., Skowron, A.: Rough-Fuzzy Hybridization: A New Trend in Decision Making. Springer, New York (1999)MATH
  83. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982). https://​doi.​org/​10.​1007/​BF01001956View ArticleMATH
  84. Pawlak, Z.: Imprecise categories, approximations and rough sets. In: Pawlak, Z. (ed.) Rough sets. Theory and Decision Library. (Series D: System Theory, Knowledge Engineering and Problem Solving), pp. 9–32. Springer, Heidelberg (1991). https://​doi.​org/​10.​1007/​978-94-011-3534-4_​2View Article
  85. Polkowski, L.: Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems, vol. 19. Physica (2013)
  86. Priestley, H.: Ordered sets and duality for distributive lattices. In: North-Holland Mathematics Studies, vol. 99, pp. 39–60. Elsevier (1984)
  87. Rasiowa, H.: N-lattices and constructive logic with strong negation (1969)
  88. Rasiowa, H.: An algebraic approach to non-classical logics, vol. 78. North-Holland, Amsterdam (1974)
  89. Rasiowa, H.: Rough concepts and multiple valued logic. In: Proceedings of the 16th ISMVL, vol. 86, pp. 282–288 (1986)
  90. Reeves, S., Clarke, M.: Logic for Computer Science. International Computer Science Series (1990)
  91. Shi, K.: S-rough sets and its applications in diagnosis-recognition for disease. In: 2002 International Conference on Machine Learning and Cybernetics, Proceedings, vol. 1, pp. 50–54. IEEE (2002)
  92. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27(2,3), 245–253 (1996)
  93. Slowinski, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Trans. Knowl. Data Eng. 12(2), 331–336 (2000)View Article
  94. Slowinski, R., Zopounidis, C.: Application of the rough set approach to evaluation of bankruptcy risk. Intell. Syst. Account. Finan. Manag. 4(1), 27–41 (1995)View Article
  95. Snyder, D.P.: Modal logic and its applications (1971)
  96. Sobociński, B.: Axiomatization of a partial system of three-value calculus of propositions. Institute of Applied Logic (1952)
  97. Spinks, M., Veroff, R.: Constructive logic with strong negation is a substructural logic. I. Studia Logica 88(3), 325–348 (2008). https://​doi.​org/​10.​1007/​s11225-008-9113-xMathSciNetView ArticleMATH
  98. Tripathy, B., Acharjya, D., Cynthya, V.: A framework for intelligent medical diagnosis using rough set with formal concept analysis. arXiv preprint arXiv:​1301.​6011 (2013)
  99. Vakarelov, D.: Notes on n-lattices and constructive logic with strong negation. Stud. Logica 36(1–2), 109–125 (1977). https://​doi.​org/​10.​1007/​BF02121118MathSciNetView ArticleMATH
  100. Ward, M., Dilworth, R.P.: Residuated lattices. Trans. Am. Math. Soc. 45(3), 335–354 (1939)MathSciNetMATHView Article
  101. Whitesitt, J.E.: Boolean Algebra and its Applications. Courier Corporation (1995)
  102. Yahia, S.B., Jaoua, A.: Discovering knowledge from fuzzy concept lattice. In: Kandel, A., Last, M., Bunke, H. (eds.) Data Mining and Computational Intelligence. Studies in Fuzziness and Soft Computing, pp. 167–190. Springer, Heidelberg (2001). https://​doi.​org/​10.​1007/​978-3-7908-1825-3_​7View Article
  103. Yao, Y.: Three-way decision: an interpretation of rules in rough set theory. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS (LNAI), vol. 5589, pp. 642–649. Springer, Heidelberg (2009). https://​doi.​org/​10.​1007/​978-3-642-02962-2_​81View Article
  104. Yao, Y.: Rough sets and three-way decisions. In: Ciucci, D., Wang, G., Mitra, S., Wu, W.-Z. (eds.) RSKT 2015. LNCS (LNAI), vol. 9436, pp. 62–73. Springer, Cham (2015). https://​doi.​org/​10.​1007/​978-3-319-25754-9_​6View Article
  105. Yao, Y.: Two views of the theory of rough sets in finite universes. Int. J. Approx. Reason. 15(4), 291–317 (1996)MathSciNetMATHView Article
  106. Yao, Y., Lin, T.Y.: Generalization of rough sets using modal logics. Intell. Autom. Soft Comput. 2(2), 103–119 (1996)View Article
  107. Zhu, W.: Generalized rough sets based on relations. Inf. Sci. 177(22), 4997–5011 (2007)MathSciNetMATHView Article
  108. Zhu, W., Wang, F.Y.: Reduction and axiomization of covering generalized rough sets. Inf. Sci. 152, 217–230 (2003)MathSciNetMATHView Article
  109. Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46(1), 39–59 (1993)MathSciNetMATHView Article
Metadaten
Titel
Sequences of Refinements of Rough Sets: Logical and Algebraic Aspects
verfasst von
Stefania Boffa
Brunella Gerla
Copyright-Jahr
2020
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-62798-3_3

Premium Partner