2018 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Computer Vision and Graphics
The estimation of line is important in numerous practical applications. The most difficult case if the line is dim, even hidden in background noise. The application of Track–Before–Detect algorithms allows the tracking of such line. Additional preprocessing using shallow neural network trained for the detection of line features is proposed in this paper. Four variant of data fusion from neural network are compared. Direct output of neural network that works as a classifier gives best results for Mean Absolute Error (MAE) metric. Similar results are obtained if output of neural network is used as a mask for input image. Monte Carlo test are used for unbiased results. Test shows improvement of MAE about two times. The application of binary output from neural network is wrong solution and the error is largest. The influence of the number of convolutional layer neurons is not significant in this test.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Zurück zum Zitat Bar-Shalom, Y.: Multitarget-Multisensor Tracking: Applications and Advances, vol. II. Artech House, Norwood (1992) Bar-Shalom, Y.: Multitarget-Multisensor Tracking: Applications and Advances, vol. II. Artech House, Norwood (1992)
2.
Zurück zum Zitat Bertsekas, D.: Dynamic Programming and Optimal Control, vol. I. Athena Scientific, Belmont (1995) MATH Bertsekas, D.: Dynamic Programming and Optimal Control, vol. I. Athena Scientific, Belmont (1995)
MATH
3.
Zurück zum Zitat Blackman, S.: Multiple-Target Tracking with Radar Applications. Artech House, Norwood (1986) Blackman, S.: Multiple-Target Tracking with Radar Applications. Artech House, Norwood (1986)
4.
Zurück zum Zitat Blackman, S., Popoli, R.: Design and Analysis of Modern Tracking Systems. Artech House, Norwood (1999) MATH Blackman, S., Popoli, R.: Design and Analysis of Modern Tracking Systems. Artech House, Norwood (1999)
MATH
5.
Zurück zum Zitat Boers, Y., Ehlers, F., Koch, W., Luginbuhl, T., Stone, L.D., Streit, R.L.: Track before detect algorithms. EURASIP J. Adv. Sig. Process. 2008, 2 pages (2008). Article ID 413932, https://doi.org/10.1155/2008/413932 CrossRef Boers, Y., Ehlers, F., Koch, W., Luginbuhl, T., Stone, L.D., Streit, R.L.: Track before detect algorithms. EURASIP J. Adv. Sig. Process.
2008, 2 pages (2008). Article ID 413932,
https://doi.org/10.1155/2008/413932
CrossRef
6.
Zurück zum Zitat Chen, Z., Ellis, T.: Automatic lane detection from vehicle motion trajectories. In: Workshop on Vehicle Retrieval in Surveillance (VRS) in conjunction with 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 466–471 (2013) Chen, Z., Ellis, T.: Automatic lane detection from vehicle motion trajectories. In: Workshop on Vehicle Retrieval in Surveillance (VRS) in conjunction with 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 466–471 (2013)
7.
Zurück zum Zitat Deans, S.R.: The Radon Transform and Some of Its Applications. Wiley, New York (1983) MATH Deans, S.R.: The Radon Transform and Some of Its Applications. Wiley, New York (1983)
MATH
8.
Zurück zum Zitat Dupois, J.F., Parizeau, M.: Evolving a vision-based line-following robot controller. In: Proceedings of the 3rd Canadian Conference on Computer and Robot Vision (CRV 2006), p. 75 (2006) Dupois, J.F., Parizeau, M.: Evolving a vision-based line-following robot controller. In: Proceedings of the 3rd Canadian Conference on Computer and Robot Vision (CRV 2006), p. 75 (2006)
9.
Zurück zum Zitat Golightly, I., Jones, D.: Visual control of an unmanned aerial vehicle for power line inspection. In: 12th International Conference on Advanced Robotics, ICAR 2005, pp. 288–295, July 2005 Golightly, I., Jones, D.: Visual control of an unmanned aerial vehicle for power line inspection. In: 12th International Conference on Advanced Robotics, ICAR 2005, pp. 288–295, July 2005
10.
Zurück zum Zitat LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 253–256, May 2010 LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 253–256, May 2010
11.
Zurück zum Zitat Matczak, G., Mazurek, P.: History dependent Viterbi algorithm for navigation purposes of line following robot. Image Process. Commun. 20(4), 5–11 (2016) CrossRef Matczak, G., Mazurek, P.: History dependent Viterbi algorithm for navigation purposes of line following robot. Image Process. Commun.
20(4), 5–11 (2016)
CrossRef
12.
Zurück zum Zitat Matczak, G., Mazurek, P.: Dim line tracking using deep learning for autonomous line following robot. In: Silhavy, R., Senkerik, R., Kominkova Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds.) CSOC 2017. AISC, vol. 573, pp. 414–423. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57261-1_41 CrossRef Matczak, G., Mazurek, P.: Dim line tracking using deep learning for autonomous line following robot. In: Silhavy, R., Senkerik, R., Kominkova Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds.) CSOC 2017. AISC, vol. 573, pp. 414–423. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57261-1_41
CrossRef
13.
Zurück zum Zitat Mazurek, P.: Line estimation using the Viterbi algorithm and track-before-detect approach for line following mobile robots. In: 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 788–793, September 2014 Mazurek, P.: Line estimation using the Viterbi algorithm and track-before-detect approach for line following mobile robots. In: 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 788–793, September 2014
14.
Zurück zum Zitat Mazurek, P.: Directional filter and the viterbi algorithm for line following robots. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 428–435. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11331-9_51 CrossRef Mazurek, P.: Directional filter and the viterbi algorithm for line following robots. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 428–435. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11331-9_51
CrossRef
15.
Zurück zum Zitat Scott, T.A., Nilanjan, R.: Biomedical Image Analysis: Tracking. Morgan & Claypool, San Rafael (2005) Scott, T.A., Nilanjan, R.: Biomedical Image Analysis: Tracking. Morgan & Claypool, San Rafael (2005)
16.
Zurück zum Zitat Stone, L., Barlow, C., Corwin, T.: Bayesian Multiple Target Tracking. Artech House, Norwood (1999) MATH Stone, L., Barlow, C., Corwin, T.: Bayesian Multiple Target Tracking. Artech House, Norwood (1999)
MATH
17.
Zurück zum Zitat Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 13(2), 260–269 (1967) CrossRef Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory
13(2), 260–269 (1967)
CrossRef
- Titel
- Shallow Convolutional Neural Network and Viterbi Algorithm for Dim Line Tracking
- DOI
- https://doi.org/10.1007/978-3-030-00692-1_33
- Autor:
-
Przemyslaw Mazurek
- Sequenznummer
- 33