Skip to main content
Erschienen in: Shape Memory and Superelasticity 4/2023

25.07.2023 | ORIGINAL RESEARCH ARTICLE

Shape Memory Materials Analysis and Research Tool (SM2ART): Finding Data Anomalies and Trends

verfasst von: P. E. Caltagirone, O. Benafan

Erschienen in: Shape Memory and Superelasticity | Ausgabe 4/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Typically, the first step in alloy selection and material production is to use handbooks, databases, or other materials guides to down-select to a specific composition and processing method for the desired application. This is true for conventional materials, such as steels, aluminums, and polymers, but until recently, no similar data source existed for shape memory materials (SMMs). There is no shortage of information in the SMM field; with over 90 years of research in the form of peer-reviewed articles, papers, and published data from companies; however, these data have not been accessible in a single location. This has posed many difficulties for the research and development of SMMs and has caused the field to move slowly. To remedy this, a web-based comprehensive repository known as the Shape Memory Materials Analysis and Research Tool (SM2ART) database has been developed. SM2ART provides unrestricted access to data from thousands of peer-reviewed articles and published data. These data are organized in a 2D and 3D visualization platform and provides viewers insight into shape memory alloys (SMAs), superelastic alloys, magnetic alloys, shape memory polymers (SMPs), and shape memory ceramics (SMCs). The work presented here provides a summary of the data available within the SM2ART database.
Literatur
1.
Zurück zum Zitat Takagi T, Sutou Y, Kainuma R, Yamauchi K, Ishida K (2006) Effect of prestrain on martensitic transformation in a Ti46.4Ni47.6Nb6.0 superelastic alloy and its application to medical stents. J Biomed Mater Res B 76(1):179–183 Takagi T, Sutou Y, Kainuma R, Yamauchi K, Ishida K (2006) Effect of prestrain on martensitic transformation in a Ti46.4Ni47.6Nb6.0 superelastic alloy and its application to medical stents. J Biomed Mater Res B 76(1):179–183
2.
Zurück zum Zitat Tian Y, Yu Z, Ong CYA, Kent D, Wang G (2015) Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents. J Mecha Behav Biomed Mater 45:132–141 Tian Y, Yu Z, Ong CYA, Kent D, Wang G (2015) Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents. J Mecha Behav Biomed Mater 45:132–141
3.
Zurück zum Zitat McCoy B (1996) Comparison of compositions and differential scanning calorimetric analyses of the new copper-Ni-Ti wires with existing Ni-Ti orthodontic wires [Thesis], The Ohio State University, p 111 McCoy B (1996) Comparison of compositions and differential scanning calorimetric analyses of the new copper-Ni-Ti wires with existing Ni-Ti orthodontic wires [Thesis], The Ohio State University, p 111
4.
Zurück zum Zitat Gil F, Planell J (1999) Effect of copper addition on the superelastic behavior of Ni-Ti shape memory alloys for orthodontic applications. J Biomed Mater Res 48(5):682–688 Gil F, Planell J (1999) Effect of copper addition on the superelastic behavior of Ni-Ti shape memory alloys for orthodontic applications. J Biomed Mater Res 48(5):682–688
5.
Zurück zum Zitat Mitose K, Ueki T (1999) Ni-Ti-Pd superelastic alloy material, its manufacturing method, and orthodontic archwire made of this alloy material, U.S. Patent No. 5,885,381. Mitose K, Ueki T (1999) Ni-Ti-Pd superelastic alloy material, its manufacturing method, and orthodontic archwire made of this alloy material, U.S. Patent No. 5,885,381.
6.
Zurück zum Zitat Iijima M, Ohno H, Kawashima I, Endo K, Mizoguchi I (2002) Mechanical behavior at different temperatures and stresses for superelastic nickel–titanium orthodontic wires having different transformation temperatures. Dent Mater 18(1):88–93 Iijima M, Ohno H, Kawashima I, Endo K, Mizoguchi I (2002) Mechanical behavior at different temperatures and stresses for superelastic nickel–titanium orthodontic wires having different transformation temperatures. Dent Mater 18(1):88–93
7.
Zurück zum Zitat Suzuki A, Kanetaka H, Shimizu Y, Tomizuka R, Hosoda H, Miyazaki S, Okuno O, Igarashi K, Mitani H (2006) Orthodontic buccal tooth movement by nickel-free titanium-based shape memory and superelastic alloy wire. Angle Orthod 76(6):1041–1046 Suzuki A, Kanetaka H, Shimizu Y, Tomizuka R, Hosoda H, Miyazaki S, Okuno O, Igarashi K, Mitani H (2006) Orthodontic buccal tooth movement by nickel-free titanium-based shape memory and superelastic alloy wire. Angle Orthod 76(6):1041–1046
8.
Zurück zum Zitat Biermann MC, Berzins DW, Bradley TG (2007) Thermal analysis of as-received and clinically retrieved copper-nickel-titanium orthodontic archwires. Angle Orthod 77(3):499–503 Biermann MC, Berzins DW, Bradley TG (2007) Thermal analysis of as-received and clinically retrieved copper-nickel-titanium orthodontic archwires. Angle Orthod 77(3):499–503
9.
Zurück zum Zitat Kanetaka H, Shimizu Y, Hosoda H, Tomizuka R, Suzuki A, Urayama S, Inamura T, Miyazaki S, Takano-Yamamoto T (2007) Orthodontic tooth movement in rats using Ni-free Ti-based shape memory alloy wire. Mater Trans 48(3):367–372 Kanetaka H, Shimizu Y, Hosoda H, Tomizuka R, Suzuki A, Urayama S, Inamura T, Miyazaki S, Takano-Yamamoto T (2007) Orthodontic tooth movement in rats using Ni-free Ti-based shape memory alloy wire. Mater Trans 48(3):367–372
10.
Zurück zum Zitat Pun DK, Berzins DW (2008) Corrosion behavior of shape memory, superelastic, and nonsuperelastic nickel-titanium-based orthodontic wires at various temperatures. Dent Mater 24(2):221–227 Pun DK, Berzins DW (2008) Corrosion behavior of shape memory, superelastic, and nonsuperelastic nickel-titanium-based orthodontic wires at various temperatures. Dent Mater 24(2):221–227
11.
Zurück zum Zitat Wang QY, Zheng YF (2008) The electrochemical behavior and surface analysis of Ti50Ni47.2Co2.8 alloy for orthodontic use. Dent Mater 24(9):1207–1211 Wang QY, Zheng YF (2008) The electrochemical behavior and surface analysis of Ti50Ni47.2Co2.8 alloy for orthodontic use. Dent Mater 24(9):1207–1211
12.
Zurück zum Zitat Zheng YF, Wang QY, Li L (2008) The electrochemical behavior and surface analysis of Ti49.6Ni45.1Cu5Cr0.3 alloy for orthodontic usage. J Biomed Mater Res B 86(2):335–340 Zheng YF, Wang QY, Li L (2008) The electrochemical behavior and surface analysis of Ti49.6Ni45.1Cu5Cr0.3 alloy for orthodontic usage. J Biomed Mater Res B 86(2):335–340
13.
Zurück zum Zitat Phukaoluan A, Khantachawana A, Kaewtatip P, Dechkunakorn S, Anuwongnukroh N, Santiwong P, Kajornchaiyakul J (2011) Property improvement of TiNi by Cu addition for orthodontics applications. Appl Mech Mater 87:95–100 Phukaoluan A, Khantachawana A, Kaewtatip P, Dechkunakorn S, Anuwongnukroh N, Santiwong P, Kajornchaiyakul J (2011) Property improvement of TiNi by Cu addition for orthodontics applications. Appl Mech Mater 87:95–100
14.
Zurück zum Zitat Arciniegas M, Manero J, Espinar E, Llamas J, Barrera J, Gil F (2013) New Ni-free superelastic alloy for orthodontic applications. Mater Sci Eng C 33(6):3325–3328 Arciniegas M, Manero J, Espinar E, Llamas J, Barrera J, Gil F (2013) New Ni-free superelastic alloy for orthodontic applications. Mater Sci Eng C 33(6):3325–3328
15.
Zurück zum Zitat Phukaoluan A, Dechkunakorn S, Anuwongnukroh N, Khantachawana A, Kaewtatip P, Kajornchaiyakul J, Wichai W (2017) Loading and unloading forces following addition of 5% Cu in nickel-titanium alloy used for orthodontics, key engineering materials. Trans Tech Publ, pp 161–166 Phukaoluan A, Dechkunakorn S, Anuwongnukroh N, Khantachawana A, Kaewtatip P, Kajornchaiyakul J, Wichai W (2017) Loading and unloading forces following addition of 5% Cu in nickel-titanium alloy used for orthodontics, key engineering materials. Trans Tech Publ, pp 161–166
17.
Zurück zum Zitat Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng G 221(4):535–552 Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng G 221(4):535–552
18.
Zurück zum Zitat Bovesecchi G, Corasaniti S, Costanza G, Tata ME (2019) A novel self-deployable solar sail system activated by shape memory alloys. Aerospace 6(7):78 Bovesecchi G, Corasaniti S, Costanza G, Tata ME (2019) A novel self-deployable solar sail system activated by shape memory alloys. Aerospace 6(7):78
19.
Zurück zum Zitat Costanza G, Tata ME (2020) Shape memory alloys for aerospace, recent developments, and new applications: a short review. Materials 13(8):1856 Costanza G, Tata ME (2020) Shape memory alloys for aerospace, recent developments, and new applications: a short review. Materials 13(8):1856
20.
Zurück zum Zitat Vertegaal CJC, Bentum MJ, Pourshaghaghi HR (2021) Using shape memory alloy for cubesat antenna design in space. In: 2021 15th European conference on antennas and propagation (EuCAP), pp 1–5 Vertegaal CJC, Bentum MJ, Pourshaghaghi HR (2021) Using shape memory alloy for cubesat antenna design in space. In: 2021 15th European conference on antennas and propagation (EuCAP), pp 1–5
21.
Zurück zum Zitat Monroe J, McAllister J, Content D, Zgarba J (2020) Negative thermal expansion ALLVAR alloys for smaller optics. SPIE Photonics West, San Francisco, California, February 4–6 2020 Monroe J, McAllister J, Content D, Zgarba J (2020) Negative thermal expansion ALLVAR alloys for smaller optics. SPIE Photonics West, San Francisco, California, February 4–6 2020
22.
Zurück zum Zitat Monroe J, East M, Hull T (2021) ALLVAR alloy athermalization: a novel and cost-effective alternative for small to moderate sized space telescopes, SPIE Photonics West, Bellingham, Washington, March 6–11 2021 Monroe J, East M, Hull T (2021) ALLVAR alloy athermalization: a novel and cost-effective alternative for small to moderate sized space telescopes, SPIE Photonics West, Bellingham, Washington, March 6–11 2021
23.
Zurück zum Zitat Clarke AJ, Field RD, McCabe RJ, Cady CM, Hackenberg RE, Thoma DJ (2008) EBSD and FIB/TEM examination of shape memory effect deformation structures in U–14at.% Nb. Acta Mater 56(11):2638–2648 Clarke AJ, Field RD, McCabe RJ, Cady CM, Hackenberg RE, Thoma DJ (2008) EBSD and FIB/TEM examination of shape memory effect deformation structures in U–14at.% Nb. Acta Mater 56(11):2638–2648
24.
Zurück zum Zitat Clarke AJ, Field RD, Dickerson PO, McCabe RJ, Swadener JG, Hackenberg RE, Thoma DJ (2009) A microcompression study of shape-memory deformation in U–13at.% Nb. Scr Mater 60(10):890–892 Clarke AJ, Field RD, Dickerson PO, McCabe RJ, Swadener JG, Hackenberg RE, Thoma DJ (2009) A microcompression study of shape-memory deformation in U–13at.% Nb. Scr Mater 60(10):890–892
25.
Zurück zum Zitat Rashidi S, Ehsani MH, Shakouri M, Karimi N (2021) Potentials of magnetic shape memory alloys for energy harvesting. J Magn Magn Mater 537:168112 Rashidi S, Ehsani MH, Shakouri M, Karimi N (2021) Potentials of magnetic shape memory alloys for energy harvesting. J Magn Magn Mater 537:168112
26.
Zurück zum Zitat Kohl M, Joseph J, Seigner L (2022) Energy harvesting using magnetic shape memory alloys. In: Olabi A-G (ed) Encyclopedia of smart materials. Elsevier, Oxford, pp 96–103 Kohl M, Joseph J, Seigner L (2022) Energy harvesting using magnetic shape memory alloys. In: Olabi A-G (ed) Encyclopedia of smart materials. Elsevier, Oxford, pp 96–103
27.
Zurück zum Zitat Zhang X, Qian M (2022) Application of magnetic shape memory alloys. In: Zhang X, Qian M (eds) Magnetic shape memory alloys: preparation, martensitic transformation and properties. Springer, Singapore, pp 255–268 Zhang X, Qian M (2022) Application of magnetic shape memory alloys. In: Zhang X, Qian M (eds) Magnetic shape memory alloys: preparation, martensitic transformation and properties. Springer, Singapore, pp 255–268
28.
Zurück zum Zitat Small W, Metzger MF, Wilson TS, Maitland DJ (2005) Laser-activated shape memory polymer microactuator for thrombus removal following ischemic stroke: preliminary in vitro analysis. IEEE J Sel Top Quantum Electron 11(4):892–901 Small W, Metzger MF, Wilson TS, Maitland DJ (2005) Laser-activated shape memory polymer microactuator for thrombus removal following ischemic stroke: preliminary in vitro analysis. IEEE J Sel Top Quantum Electron 11(4):892–901
29.
Zurück zum Zitat Maitland DJ, Metzger MF, Schumann D, Lee A, Wilson TS (2002) Photothermal properties of shape memory polymer micro-actuators for treating stroke*. Lasers Surg Med 30(1):1–11 Maitland DJ, Metzger MF, Schumann D, Lee A, Wilson TS (2002) Photothermal properties of shape memory polymer micro-actuators for treating stroke*. Lasers Surg Med 30(1):1–11
30.
Zurück zum Zitat Chen M-C, Chang Y, Liu C-T, Lai W-Y, Peng S-F, Hung Y-W, Tsai H-W, Sung H-W (2009) The characteristics and in vivo suppression of neointimal formation with sirolimus-eluting polymeric stents. Biomaterials 30(1):79–88 Chen M-C, Chang Y, Liu C-T, Lai W-Y, Peng S-F, Hung Y-W, Tsai H-W, Sung H-W (2009) The characteristics and in vivo suppression of neointimal formation with sirolimus-eluting polymeric stents. Biomaterials 30(1):79–88
31.
Zurück zum Zitat Baer GM, Small W, Wilson TS, Benett WJ, Matthews DL, Hartman J, Maitland DJ (2007) Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent. Biomed Eng Online 6(1):43 Baer GM, Small W, Wilson TS, Benett WJ, Matthews DL, Hartman J, Maitland DJ (2007) Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent. Biomed Eng Online 6(1):43
32.
Zurück zum Zitat Jung YC, Cho JW (2010) Application of shape memory polyurethane in orthodontic. J Mater Sci—Mater Med 21(10):2881–2886 Jung YC, Cho JW (2010) Application of shape memory polyurethane in orthodontic. J Mater Sci—Mater Med 21(10):2881–2886
33.
Zurück zum Zitat Nakasima A, Hu JR, Ichinose M, Shimada H (1991) Potential application of shape memory plastic as elastic material in clinical orthodontics. Eur J Orthod 13(3):179–186 Nakasima A, Hu JR, Ichinose M, Shimada H (1991) Potential application of shape memory plastic as elastic material in clinical orthodontics. Eur J Orthod 13(3):179–186
34.
Zurück zum Zitat Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573):1673–1676 Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573):1673–1676
35.
Zurück zum Zitat Ortega JM, Small W, Wilson TS, Benett WJ, Loge JM, Maitland DJ (2007) A shape memory polymer dialysis needle adapter for the reduction of hemodynamic stress within arteriovenous grafts. IEEE Trans Biomed Eng 54(9):1722–1724 Ortega JM, Small W, Wilson TS, Benett WJ, Loge JM, Maitland DJ (2007) A shape memory polymer dialysis needle adapter for the reduction of hemodynamic stress within arteriovenous grafts. IEEE Trans Biomed Eng 54(9):1722–1724
36.
Zurück zum Zitat Gök MO, Bilir MZ, Gürcüm BH (2015) Shape-memory applications in textile design. Procedia Soc Behav Sci 195:2160–2169 Gök MO, Bilir MZ, Gürcüm BH (2015) Shape-memory applications in textile design. Procedia Soc Behav Sci 195:2160–2169
37.
Zurück zum Zitat Hu J, Chen S (2010) A review of actively moving polymers in textile applications. J Mater Chem 20(17):3346–3355 Hu J, Chen S (2010) A review of actively moving polymers in textile applications. J Mater Chem 20(17):3346–3355
38.
Zurück zum Zitat Hu J, Meng H, Li G, Ibekwe SI (2012) A review of stimuli-responsive polymers for smart textile applications. Smart Mater Struct 21(5):053001 Hu J, Meng H, Li G, Ibekwe SI (2012) A review of stimuli-responsive polymers for smart textile applications. Smart Mater Struct 21(5):053001
39.
Zurück zum Zitat Jeong HM, Ahn BK, Cho SM, Kim BK (2000) Water vapor permeability of shape memory polyurethane with amorphous reversible phase. J Polym Sci B 38(23):3009–3017 Jeong HM, Ahn BK, Cho SM, Kim BK (2000) Water vapor permeability of shape memory polyurethane with amorphous reversible phase. J Polym Sci B 38(23):3009–3017
40.
Zurück zum Zitat Ding XM, Hu JL, Tao XM, Wang ZF, Wang B (2005) Free volume and water vapor transport properties of temperature-sensitive polyurethanes. J Polym Sci B 43(14):1865–1872 Ding XM, Hu JL, Tao XM, Wang ZF, Wang B (2005) Free volume and water vapor transport properties of temperature-sensitive polyurethanes. J Polym Sci B 43(14):1865–1872
41.
Zurück zum Zitat Yin WL, Sun QJ, Zhang B, Liu JC, Leng JS (2008) Seamless morphing wing with SMP skin. Adv Mater Res 47–50:97–100 Yin WL, Sun QJ, Zhang B, Liu JC, Leng JS (2008) Seamless morphing wing with SMP skin. Adv Mater Res 47–50:97–100
42.
Zurück zum Zitat Barrett R, Taylor R, Keller P, Codell D, Adams L (2007) Deployable reflectors for small satellites. Small Satellite Conference, Logan, Utah, August 4–9 Barrett R, Taylor R, Keller P, Codell D, Adams L (2007) Deployable reflectors for small satellites. Small Satellite Conference, Logan, Utah, August 4–9
43.
Zurück zum Zitat Barrett R, Taylor R, Keller P, Lake M, Stern T, Freebury G, Beidleman N (2007) Design of a solar array to meet the standard bus specification for operation responsive space. In: 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, p 2332 Barrett R, Taylor R, Keller P, Lake M, Stern T, Freebury G, Beidleman N (2007) Design of a solar array to meet the standard bus specification for operation responsive space. In: 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, p 2332
44.
Zurück zum Zitat Yin W, Liu J, Leng J (2009) Deformation analysis of shape memory polymer for morphing wing skin under airflow. Front Mech Eng China 4(4):447 Yin W, Liu J, Leng J (2009) Deformation analysis of shape memory polymer for morphing wing skin under airflow. Front Mech Eng China 4(4):447
45.
Zurück zum Zitat Zhang R, Guo X, Liu Y, Leng J (2014) Theoretical analysis and experiments of a space deployable truss structure. Compos Struct 112:226–230 Zhang R, Guo X, Liu Y, Leng J (2014) Theoretical analysis and experiments of a space deployable truss structure. Compos Struct 112:226–230
46.
Zurück zum Zitat Lan X, Liu Y, Lv H, Wang X, Leng J, Du S (2009) Fiber reinforced shape-memory polymer composite and its application in a deployable hinge. Smart Mater Struct 18(2):024002 Lan X, Liu Y, Lv H, Wang X, Leng J, Du S (2009) Fiber reinforced shape-memory polymer composite and its application in a deployable hinge. Smart Mater Struct 18(2):024002
47.
Zurück zum Zitat Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49–50:3–33 Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49–50:3–33
48.
Zurück zum Zitat Liu Y, Du H, Liu L, Leng J (2014) Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct 23(2):023001 Liu Y, Du H, Liu L, Leng J (2014) Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct 23(2):023001
49.
Zurück zum Zitat Uchino K (2016) Antiferroelectric shape memory ceramics. Actuators 5(2):11 Uchino K (2016) Antiferroelectric shape memory ceramics. Actuators 5(2):11
50.
Zurück zum Zitat Quade DJ (2017) Investigation of interfacial bonding between shape memory alloys and polymer matrix composites. University of Akron, Orrville Quade DJ (2017) Investigation of interfacial bonding between shape memory alloys and polymer matrix composites. University of Akron, Orrville
51.
Zurück zum Zitat Caltagirone PE (2021) Improvements of fiber reinforced thermoplastic composite bonds: thick joint failure model, shape memory alloy reinforcements, and in-situ x-ray characterizations, PhD thesis, Colorado School of Mines, Golden, Colorado Caltagirone PE (2021) Improvements of fiber reinforced thermoplastic composite bonds: thick joint failure model, shape memory alloy reinforcements, and in-situ x-ray characterizations, PhD thesis, Colorado School of Mines, Golden, Colorado
52.
Zurück zum Zitat Soto-Parra D, Zhang X, Cao S, Vives E, Salje EKH, Planes A (2015) Avalanches in compressed Ti-Ni shape-memory porous alloys: an acoustic emission study. Phys Rev E 91(6):060401 Soto-Parra D, Zhang X, Cao S, Vives E, Salje EKH, Planes A (2015) Avalanches in compressed Ti-Ni shape-memory porous alloys: an acoustic emission study. Phys Rev E 91(6):060401
55.
Zurück zum Zitat Shape memory alloys. In: Davis JR (ed) (1998) Metals handbook desk edition, ASM International Shape memory alloys. In: Davis JR (ed) (1998) Metals handbook desk edition, ASM International
57.
Zurück zum Zitat Benafan O, Bigelow GS, Young AW (2020) Shape memory materials database tool—a compendium of functional data for shape memory materials. Adv Eng Mater 22(7):1901370 Benafan O, Bigelow GS, Young AW (2020) Shape memory materials database tool—a compendium of functional data for shape memory materials. Adv Eng Mater 22(7):1901370
58.
Zurück zum Zitat Honrao SJ, Benafan O, Lawson JW (2022) Data-driven study of shape memory behavior of multi-component Ni–Ti alloys in large compositional and processing space. Shape Mem Superelast 9:144–155 Honrao SJ, Benafan O, Lawson JW (2022) Data-driven study of shape memory behavior of multi-component Ni–Ti alloys in large compositional and processing space. Shape Mem Superelast 9:144–155
59.
Zurück zum Zitat Krishnan R, Brown L (1973) Martensitic transformations in β Ag-Cd alloys. Metall Trans 4(4):1017–1022 Krishnan R, Brown L (1973) Martensitic transformations in β Ag-Cd alloys. Metall Trans 4(4):1017–1022
60.
Zurück zum Zitat Miura S, Horn F, Nakanishi N (1979) Pseudoelastic behaviour associated with thermoelastic martensitic transformation in an Au52.5xAgxCd47.5 pseudobinary alloy. Philos Mag A 40(5):611–624 Miura S, Horn F, Nakanishi N (1979) Pseudoelastic behaviour associated with thermoelastic martensitic transformation in an Au52.5xAgxCd47.5 pseudobinary alloy. Philos Mag A 40(5):611–624
61.
Zurück zum Zitat Nagasawa A, Tatsumi A (1988) Phase transformation in the quenched Ag3Al beta phase alloy. Trans Jpn Inst Met 29(8):625–633 Nagasawa A, Tatsumi A (1988) Phase transformation in the quenched Ag3Al beta phase alloy. Trans Jpn Inst Met 29(8):625–633
62.
Zurück zum Zitat Prasad K, Bansal C (1986) Resistivity and thermoelectric power measurements on AgCd shape memory alloys. Phys Status Solidi A 98(2):453–464 Prasad K, Bansal C (1986) Resistivity and thermoelectric power measurements on AgCd shape memory alloys. Phys Status Solidi A 98(2):453–464
64.
Zurück zum Zitat Takezawa K, Hoshi H, Marukawa K (1999) Relation between long-range ordering and martensitic transformation temperature in Ag alloys. Mater Sci Eng A 273:564–567 Takezawa K, Hoshi H, Marukawa K (1999) Relation between long-range ordering and martensitic transformation temperature in Ag alloys. Mater Sci Eng A 273:564–567
65.
Zurück zum Zitat Takezawa K, Sato S, Minato K, Maruyama S, Marukawa K (1992) Martensitic and bainitic transformations in Ag–Zn alloys. Mater Trans JIM 33(3):294–301 Takezawa K, Sato S, Minato K, Maruyama S, Marukawa K (1992) Martensitic and bainitic transformations in Ag–Zn alloys. Mater Trans JIM 33(3):294–301
66.
Zurück zum Zitat Tong H, Wayman C (1973) Marmem effect in β’AgCd alloys. Scr Metall 7(2):215–221 Tong H, Wayman C (1973) Marmem effect in β’AgCd alloys. Scr Metall 7(2):215–221
67.
Zurück zum Zitat Olander A (1932) An electrochemical investigation of solid cadmium-gold alloys. J Am Chem Soc 54:3819–3833 Olander A (1932) An electrochemical investigation of solid cadmium-gold alloys. J Am Chem Soc 54:3819–3833
68.
Zurück zum Zitat Battezzati L, Barbero S, Belotti M, Riontino G (2003) Resistometric and calorimetric analysis of phase transformations in AuCu alloys. Z Met 94(4):449–452 Battezzati L, Barbero S, Belotti M, Riontino G (2003) Resistometric and calorimetric analysis of phase transformations in AuCu alloys. Z Met 94(4):449–452
69.
Zurück zum Zitat Cashion JD, Chadwick J, Coyle CM, Finlayson TR (2003) The aging effect in Au-Cd alloys: a Mössbauer spectroscopy study. Journal de Physique IV (Proceedings) EDP sciences 112:1087–1090 Cashion JD, Chadwick J, Coyle CM, Finlayson TR (2003) The aging effect in Au-Cd alloys: a Mössbauer spectroscopy study. Journal de Physique IV (Proceedings) EDP sciences 112:1087–1090
71.
Zurück zum Zitat Ishibashi H, Kogachi M, Ohba T, Ren X, Otsuka K (2002) Vacancy migration and long-range ordering due to ageing in AuCd shape memory alloys. Mater Sci Eng A 329:568–572 Ishibashi H, Kogachi M, Ohba T, Ren X, Otsuka K (2002) Vacancy migration and long-range ordering due to ageing in AuCd shape memory alloys. Mater Sci Eng A 329:568–572
72.
Zurück zum Zitat Kogachi M, Ishibashi H, Ohba T, Ren X, Otsuka K (2000) Examination of vacancy migration and long-range ordering due to ageing in Au-49.8Cd shape memory alloy. Scr Mater 42(9):841–847 Kogachi M, Ishibashi H, Ohba T, Ren X, Otsuka K (2000) Examination of vacancy migration and long-range ordering due to ageing in Au-49.8Cd shape memory alloy. Scr Mater 42(9):841–847
73.
Zurück zum Zitat Otsuka K, Ren X, Murakami Y, Kawano T, Ishii T, Ohba T (1999) Composition dependence of the rubber-like behavior in ζ2′-martensite of AuCd alloys. Mater Sci Eng A 273:558–563 Otsuka K, Ren X, Murakami Y, Kawano T, Ishii T, Ohba T (1999) Composition dependence of the rubber-like behavior in ζ2′-martensite of AuCd alloys. Mater Sci Eng A 273:558–563
74.
Zurück zum Zitat Xue D, Zhou Y, Ding X, Otsuka K, Sun J, Ren X (2011) Martensite aging effects on the dynamic properties of Au–Cd shape memory alloys: characteristics and modeling. Acta Mater 59(12):4999–5011 Xue D, Zhou Y, Ding X, Otsuka K, Sun J, Ren X (2011) Martensite aging effects on the dynamic properties of Au–Cd shape memory alloys: characteristics and modeling. Acta Mater 59(12):4999–5011
75.
Zurück zum Zitat Miura S, Maeda S, Nakanishi N (1974) Pseudoelasticity in Au-Cu-Zn thermoelastic martensite. Philos Mag 30(3):565–581 Miura S, Maeda S, Nakanishi N (1974) Pseudoelasticity in Au-Cu-Zn thermoelastic martensite. Philos Mag 30(3):565–581
76.
Zurück zum Zitat Sakamoto H, Otsuka K, Shimizu K (1977) Rubber-like behavior in a Cu-Al-Ni alloy. Scr Metall 11(7):607–611 Sakamoto H, Otsuka K, Shimizu K (1977) Rubber-like behavior in a Cu-Al-Ni alloy. Scr Metall 11(7):607–611
77.
Zurück zum Zitat Abu-Arab A, Ahlers M (1988) The stabilization of martensite in Cu-Zn-Al alloys. Acta Metall 36(9):2627–2638 Abu-Arab A, Ahlers M (1988) The stabilization of martensite in Cu-Zn-Al alloys. Acta Metall 36(9):2627–2638
78.
Zurück zum Zitat Battezzati L, Belotti M, Brunella V (2001) Calorimetry of ordering and disordering in AuCu alloys. Scr Mater 44(12):2759–2764 Battezzati L, Belotti M, Brunella V (2001) Calorimetry of ordering and disordering in AuCu alloys. Scr Mater 44(12):2759–2764
79.
Zurück zum Zitat Hennig J, Mari D, Schaller R (2009) Order-disorder phase transition and stress-induced diffusion in Au-Cu. Phys Rev B 79(14):144116 Hennig J, Mari D, Schaller R (2009) Order-disorder phase transition and stress-induced diffusion in Au-Cu. Phys Rev B 79(14):144116
80.
Zurück zum Zitat Mašek P, Chmelik F, Šıma V, Brinck A, Neuhäuser H (1999) Microstructure processes induced by phase transitions in a CuAu alloy as studied by acoustic emission and optical cinematography. Acta Mater 47(2):427–434 Mašek P, Chmelik F, Šıma V, Brinck A, Neuhäuser H (1999) Microstructure processes induced by phase transitions in a CuAu alloy as studied by acoustic emission and optical cinematography. Acta Mater 47(2):427–434
81.
Zurück zum Zitat Miranda G, Silva F, Soares D (2013) Solid state transformations and equilibrium crystal structures of an Au-Cu alloy with shape memory effect. Mater Sci Forum 730–732:859–864 Miranda G, Silva F, Soares D (2013) Solid state transformations and equilibrium crystal structures of an Au-Cu alloy with shape memory effect. Mater Sci Forum 730–732:859–864
83.
Zurück zum Zitat Šachl J, Šíma V (2008) A study of order-disorder transformation in CuAu alloy under an external load. Kovove Mater 46:277–283 Šachl J, Šíma V (2008) A study of order-disorder transformation in CuAu alloy under an external load. Kovove Mater 46:277–283
84.
Zurück zum Zitat Šachl J, Šíma V, Pfeiler W (2004) Reversible and irreversible changes of surface morphology by order–disorder transition in CuAu alloy. J Alloys Compd 378(1):274–278 Šachl J, Šíma V, Pfeiler W (2004) Reversible and irreversible changes of surface morphology by order–disorder transition in CuAu alloy. J Alloys Compd 378(1):274–278
85.
Zurück zum Zitat Volkov AY, Antonov B, Patselov A (2010) Effect of external force fields on the domain structure of equiatomic CuAu alloy. Phys Met Metallogr 110(3):250–259 Volkov AY, Antonov B, Patselov A (2010) Effect of external force fields on the domain structure of equiatomic CuAu alloy. Phys Met Metallogr 110(3):250–259
86.
Zurück zum Zitat Volkov AY, Kazantsev V (2012) Impact of the initial state on the structure and properties of the ordered CuAu alloy. Phys Met Metallogr 113(1):62–71 Volkov AY, Kazantsev V (2012) Impact of the initial state on the structure and properties of the ordered CuAu alloy. Phys Met Metallogr 113(1):62–71
87.
Zurück zum Zitat Darling T, Chu F, Migliori A, Thoma D, Lopez M, Lashley J, Lang B, Boerio-Goates J, Woodfiel B (2002) Elastic and thermodynamic properties of the shape-memory alloy AuZn. Philos Mag B 82(7):825–837 Darling T, Chu F, Migliori A, Thoma D, Lopez M, Lashley J, Lang B, Boerio-Goates J, Woodfiel B (2002) Elastic and thermodynamic properties of the shape-memory alloy AuZn. Philos Mag B 82(7):825–837
88.
Zurück zum Zitat Lashley JC, Ledbetter H, Darling TW, Saxena A, Malinowski A, Hundley MF, Smith JL, Thoma DJ (2006) Free-energy density of the shape-memory alloy AuZn. Mater Trans 47(3):587–593 Lashley JC, Ledbetter H, Darling TW, Saxena A, Malinowski A, Hundley MF, Smith JL, Thoma DJ (2006) Free-energy density of the shape-memory alloy AuZn. Mater Trans 47(3):587–593
89.
Zurück zum Zitat Lashley JC, Shapiro SM, Winn BL, Opeil CP, Manley ME, Alatas A, Ratcliff W, Park T, Fisher RA, Mihaila B, Riseborough P, Salje EKH, Smith JL (2008) Observation of a continuous phase transition in a shape-memory alloy. Phys Rev Lett 101(13):135703 Lashley JC, Shapiro SM, Winn BL, Opeil CP, Manley ME, Alatas A, Ratcliff W, Park T, Fisher RA, Mihaila B, Riseborough P, Salje EKH, Smith JL (2008) Observation of a continuous phase transition in a shape-memory alloy. Phys Rev Lett 101(13):135703
90.
Zurück zum Zitat McDonald RD, Goddard PA, Lashley J, Harrison N, Mielke CH, Singleton J, Harima H, Suzuki M-T (2006) High magnetic field studies of the shape memory alloy AuZn. J Phys Chem Solids 67(9):2100–2105 McDonald RD, Goddard PA, Lashley J, Harrison N, Mielke CH, Singleton J, Harima H, Suzuki M-T (2006) High magnetic field studies of the shape memory alloy AuZn. J Phys Chem Solids 67(9):2100–2105
91.
Zurück zum Zitat Svitelskiy O, Suslov A, Singleton J, Lashley JC (2006) Ultrasonic probe of the AuZn fermi surface. In: AIP conference proceedings, AIP, pp 1319–1320 Svitelskiy O, Suslov A, Singleton J, Lashley JC (2006) Ultrasonic probe of the AuZn fermi surface. In: AIP conference proceedings, AIP, pp 1319–1320
92.
Zurück zum Zitat Winn B, Shapiro S, Lashley JC, Opeil C, Ratcliff W (2010) Structural phase transition in AuZn alloys. J Phys: Conf Ser 251:012027 Winn B, Shapiro S, Lashley JC, Opeil C, Ratcliff W (2010) Structural phase transition in AuZn alloys. J Phys: Conf Ser 251:012027
93.
Zurück zum Zitat Giordana MF, Muñoz-Vásquez N, Garro-González M, Esquivel M, Zelaya E (2015) Study of the formation of Cu-24at.% Al by reactive milling. Procedia Mater Sci 9:262–270 Giordana MF, Muñoz-Vásquez N, Garro-González M, Esquivel M, Zelaya E (2015) Study of the formation of Cu-24at.% Al by reactive milling. Procedia Mater Sci 9:262–270
94.
Zurück zum Zitat Silva R, Machado E, Adorno A, Magdalena A, Carvalho T (2012) Completeness of β-phase decomposition reaction in Cu–Al–Ag alloys. J Therm Anal Calorim 109(2):927–931 Silva R, Machado E, Adorno A, Magdalena A, Carvalho T (2012) Completeness of β-phase decomposition reaction in Cu–Al–Ag alloys. J Therm Anal Calorim 109(2):927–931
95.
Zurück zum Zitat Pascal NS, Giordana M, Napolitano F, Esquivel M, Zelaya E (2017) Thermal stability analysis of Cu-11.8 wt% Al milled samples by TEM and HT-XRD. Adv Powder Technol 28(10):2605–2612 Pascal NS, Giordana M, Napolitano F, Esquivel M, Zelaya E (2017) Thermal stability analysis of Cu-11.8 wt% Al milled samples by TEM and HT-XRD. Adv Powder Technol 28(10):2605–2612
96.
Zurück zum Zitat Adorno A, Guerreiro M, Benedetti AV (2001) Isothermal aging kinetics in the Cu–19 at.% Al alloy. J Alloys Compd 315(1–2):150–1578 Adorno A, Guerreiro M, Benedetti AV (2001) Isothermal aging kinetics in the Cu–19 at.% Al alloy. J Alloys Compd 315(1–2):150–1578
97.
Zurück zum Zitat Cesari E, Kustov S, Golyandin S, Sapozhnikov K, Van Humbeeck J (2006) Mobility of point-like defects in Cu–Al martensites. Mater Sci Eng A 438:369–373 Cesari E, Kustov S, Golyandin S, Sapozhnikov K, Van Humbeeck J (2006) Mobility of point-like defects in Cu–Al martensites. Mater Sci Eng A 438:369–373
98.
Zurück zum Zitat Giordana M, Esquivel M, Zelaya E (2015) A detailed study of phase evolution in Cu–16 at.% Al and Cu–30 at.% Al alloys under different types of mechanical alloying processes. Adv Powder Technol 26(2):470–477 Giordana M, Esquivel M, Zelaya E (2015) A detailed study of phase evolution in Cu–16 at.% Al and Cu–30 at.% Al alloys under different types of mechanical alloying processes. Adv Powder Technol 26(2):470–477
99.
Zurück zum Zitat Giordana MF, Muñoz-Vásquez N, Esquivel M, Zelaya E (2017) Analysis of the Cu-Al milling stages through the microstructure evolution studied by TEM and SEM. Metallogr Microstruct Anal 6(2):139–149 Giordana MF, Muñoz-Vásquez N, Esquivel M, Zelaya E (2017) Analysis of the Cu-Al milling stages through the microstructure evolution studied by TEM and SEM. Metallogr Microstruct Anal 6(2):139–149
100.
Zurück zum Zitat Graczykowski B, Biskupski P, Mroz B, Mielcarek S, Nó M, San Juan J (2009) Elastic properties of Cu–Al–Ni shape memory alloys studied by dynamic mechanical analysis. Smart Mater Struct 19(1):015010 Graczykowski B, Biskupski P, Mroz B, Mielcarek S, Nó M, San Juan J (2009) Elastic properties of Cu–Al–Ni shape memory alloys studied by dynamic mechanical analysis. Smart Mater Struct 19(1):015010
101.
Zurück zum Zitat Huang H-Y, Liu J-P, Wang Y, Liu X-F, Xie J-X (2012) Tension–compression asymmetry of stress-induced transformations in martensitic Cu-12 wt.% Al alloys. Mater Lett 79:51–54 Huang H-Y, Liu J-P, Wang Y, Liu X-F, Xie J-X (2012) Tension–compression asymmetry of stress-induced transformations in martensitic Cu-12 wt.% Al alloys. Mater Lett 79:51–54
102.
Zurück zum Zitat Huang H-Y, Wang Y, Xie J-X (2014) Stress-induced phase transformation characteristics and its effect on the enhanced ductility in continuous columnar-grained polycrystalline Cu–12 wt% Al alloy. Mater Sci Eng A 596:103–111 Huang H-Y, Wang Y, Xie J-X (2014) Stress-induced phase transformation characteristics and its effect on the enhanced ductility in continuous columnar-grained polycrystalline Cu–12 wt% Al alloy. Mater Sci Eng A 596:103–111
103.
Zurück zum Zitat Lovey F, Coene W, Van Dyck D, Van Tendeloo G, Van Landuyt J, Amelinckx S (1984) HREM imaging conditions for stacking sequences in 18R martensite of Cu-Al alloys. Ultramicroscopy 15(4):345–356 Lovey F, Coene W, Van Dyck D, Van Tendeloo G, Van Landuyt J, Amelinckx S (1984) HREM imaging conditions for stacking sequences in 18R martensite of Cu-Al alloys. Ultramicroscopy 15(4):345–356
104.
Zurück zum Zitat Lovey F, Van Tendeloo G, Van Landuyt J, Amelinckx S (1985) High resolution electron microscopy of twin interfaces in 2H and 18R martensites of Cu–Al alloys. Scr Metall 19:1223–1228 Lovey F, Van Tendeloo G, Van Landuyt J, Amelinckx S (1985) High resolution electron microscopy of twin interfaces in 2H and 18R martensites of Cu–Al alloys. Scr Metall 19:1223–1228
105.
Zurück zum Zitat Lovey F, van Tendeloo G, van Landuyt J, Delaey L, Amelinckx S (1984) On the nature of various stacking defects in 18R martensite in Cu-Al alloys A study by high resolution electron microscopy. Phys Status Solidi (A) 86:553–564 Lovey F, van Tendeloo G, van Landuyt J, Delaey L, Amelinckx S (1984) On the nature of various stacking defects in 18R martensite in Cu-Al alloys A study by high resolution electron microscopy. Phys Status Solidi (A) 86:553–564
106.
Zurück zum Zitat Roulin G, Duval P (1997) Initial stages of ordering obtained by tempering of the disordered martensitic phase of CuAl alloys. Scr Mater 37(1):45–51 Roulin G, Duval P (1997) Initial stages of ordering obtained by tempering of the disordered martensitic phase of CuAl alloys. Scr Mater 37(1):45–51
107.
Zurück zum Zitat Soliman H, Habib N (2014) Effect of ageing treatment on hardness of Cu-12.5 wt% Al shape memory alloy. Indian J Phys 88(8):803–812 Soliman H, Habib N (2014) Effect of ageing treatment on hardness of Cu-12.5 wt% Al shape memory alloy. Indian J Phys 88(8):803–812
108.
Zurück zum Zitat Tas H, Delaey L, Deruyttere A (1971) Stress induced phase transformations and the shape memory effect in β′1Cu-Al martensite. Scr Metall 5(12):1117–1124 Tas H, Delaey L, Deruyttere A (1971) Stress induced phase transformations and the shape memory effect in β′1Cu-Al martensite. Scr Metall 5(12):1117–1124
109.
Zurück zum Zitat Tas H, Delaey L, Deruyttere A (1973) The self-accommodating character of the β 1 copper-aluminum martensite. Metall Trans 4(12):2833–2840 Tas H, Delaey L, Deruyttere A (1973) The self-accommodating character of the β 1 copper-aluminum martensite. Metall Trans 4(12):2833–2840
110.
Zurück zum Zitat Wang Y, Liao B, Liu J, Chen S, Feng Y, Zhang Y, Zhang R (2012) Effects of deep cryogenic treatment on the solid-state phase transformation of Cu–Al alloy in cooling process. Phase Trans 85(7):650–657 Wang Y, Liao B, Liu J, Chen S, Feng Y, Zhang Y, Zhang R (2012) Effects of deep cryogenic treatment on the solid-state phase transformation of Cu–Al alloy in cooling process. Phase Trans 85(7):650–657
111.
Zurück zum Zitat Zhang G, Sauvage X, Wang J, Gao N, Langdon T (2013) Evolution of a martensitic structure in a Cu–Al alloy during processing by high-pressure torsion. J Mater Sci 48(13):4613–4619 Zhang G, Sauvage X, Wang J, Gao N, Langdon T (2013) Evolution of a martensitic structure in a Cu–Al alloy during processing by high-pressure torsion. J Mater Sci 48(13):4613–4619
112.
Zurück zum Zitat Koyama Y, Ukena T, Nittono O (1982) Phase transformations and shape memory effect in indium lead alloys. Trans Jpn Inst Met 23(9):518–529 Koyama Y, Ukena T, Nittono O (1982) Phase transformations and shape memory effect in indium lead alloys. Trans Jpn Inst Met 23(9):518–529
113.
Zurück zum Zitat Lubenets S, Natsik V, Pal-Val L, Pal-Val P, Fomenko L (2002) Kinetics of the low-temperature structural transformation in the In–4.3 at.% Cd solid solution. Low Temp Phys 28(6):465–474 Lubenets S, Natsik V, Pal-Val L, Pal-Val P, Fomenko L (2002) Kinetics of the low-temperature structural transformation in the In–4.3 at.% Cd solid solution. Low Temp Phys 28(6):465–474
114.
Zurück zum Zitat Lubenets SV, Natsik VD, Pal-Val PP, Pal-Val LN, Fomenko LS (1998) Low-temperature structure transformation in In–Cd solid solutions. Mater Sci Eng A 256(1):1–7 Lubenets SV, Natsik VD, Pal-Val PP, Pal-Val LN, Fomenko LS (1998) Low-temperature structure transformation in In–Cd solid solutions. Mater Sci Eng A 256(1):1–7
115.
Zurück zum Zitat Luo ZP (2012) An overview on the indium-thallium (In–Tl) shape memory alloy nanowires. Metallogr Microstruct Anal 1(6):320–326 Luo ZP (2012) An overview on the indium-thallium (In–Tl) shape memory alloy nanowires. Metallogr Microstruct Anal 1(6):320–326
116.
Zurück zum Zitat Miura S, Ito M, Nakanishi N (1976) Pseudoelastic behavior and its strain rate dependence in thermoelastic In–Tl martensite. Scr Metall 10(1):87–92 Miura S, Ito M, Nakanishi N (1976) Pseudoelastic behavior and its strain rate dependence in thermoelastic In–Tl martensite. Scr Metall 10(1):87–92
117.
Zurück zum Zitat Pal-Val P, Pal-Val L, Ostapovets A, Vanek P (2008) Low temperature kinetics of In-Cd solid solution decomposition. Solid State Phenom 137:35–42 Pal-Val P, Pal-Val L, Ostapovets A, Vanek P (2008) Low temperature kinetics of In-Cd solid solution decomposition. Solid State Phenom 137:35–42
118.
Zurück zum Zitat Sonu CH, O’Keefe TJ (1994) Characterization of phase transformation behavior in electrolytically produced indium-thallium shape memory alloy films. Mater Charact 33(4):311–319 Sonu CH, O’Keefe TJ (1994) Characterization of phase transformation behavior in electrolytically produced indium-thallium shape memory alloy films. Mater Charact 33(4):311–319
119.
Zurück zum Zitat Zheng H, Luo Z, Fang D, Phillips FR, Lagoudas DC (2012) Reversible phase transformations in a shape memory alloy In–Tl nanowires observed by in situ transmission electron microscopy. Mater Lett 70:109–112 Zheng H, Luo Z, Fang D, Phillips FR, Lagoudas DC (2012) Reversible phase transformations in a shape memory alloy In–Tl nanowires observed by in situ transmission electron microscopy. Mater Lett 70:109–112
120.
Zurück zum Zitat Ogawa Y, Ando D, Sutou Y, Somekawa H, Koike J (2017) Martensitic transformation in a β-Type Mg–Sc alloy. Shape Mem Superelast 4(1):167–173 Ogawa Y, Ando D, Sutou Y, Somekawa H, Koike J (2017) Martensitic transformation in a β-Type Mg–Sc alloy. Shape Mem Superelast 4(1):167–173
121.
Zurück zum Zitat Ando D, Ogawa Y, Suzuki T, Sutou Y, Koike J (2015) Age-hardening effect by phase transformation of high Sc containing Mg alloy. Mater Lett 161:5–8 Ando D, Ogawa Y, Suzuki T, Sutou Y, Koike J (2015) Age-hardening effect by phase transformation of high Sc containing Mg alloy. Mater Lett 161:5–8
122.
Zurück zum Zitat Ogawa Y, Ando D, Sutou Y, Koike J (2016) A lightweight shape-memory magnesium alloy. Science 353(6297):368–370 Ogawa Y, Ando D, Sutou Y, Koike J (2016) A lightweight shape-memory magnesium alloy. Science 353(6297):368–370
123.
Zurück zum Zitat Ogawa Y, Ando D, Sutou Y, Koike J (2016) Aging effect of Mg-Sc alloy with α+ β two-phase microstructure. Mater Trans 57(7):1119–1123 Ogawa Y, Ando D, Sutou Y, Koike J (2016) Aging effect of Mg-Sc alloy with α+ β two-phase microstructure. Mater Trans 57(7):1119–1123
124.
Zurück zum Zitat Ogawa Y, Ando D, Sutou Y, Koike J (2017) Texture randomization of hexagonal close packed phase through hexagonal close packed/body centered cubic phase transformation in Mg-Sc alloy. Scr Mater 128:27–31 Ogawa Y, Ando D, Sutou Y, Koike J (2017) Texture randomization of hexagonal close packed phase through hexagonal close packed/body centered cubic phase transformation in Mg-Sc alloy. Scr Mater 128:27–31
125.
Zurück zum Zitat Ogawa Y, Ando D, Sutou Y, Yoshimi K, Koike J (2016) Determination of α/β phase boundaries and mechanical characterization of Mg-Sc binary alloys. Mater Sci Eng A 670:335–341 Ogawa Y, Ando D, Sutou Y, Yoshimi K, Koike J (2016) Determination of α/β phase boundaries and mechanical characterization of Mg-Sc binary alloys. Mater Sci Eng A 670:335–341
126.
Zurück zum Zitat Ogawa Y, Sutou Y, Ando D, Koike J (2018) Aging precipitation kinetics of Mg-Sc alloy with bcc+ hcp two-phase. J Alloys Compd 747:854–860 Ogawa Y, Sutou Y, Ando D, Koike J (2018) Aging precipitation kinetics of Mg-Sc alloy with bcc+ hcp two-phase. J Alloys Compd 747:854–860
127.
Zurück zum Zitat Ogawa Y, Sutou Y, Ando D, Koike J, Somekawa H (2019) Ordering of the bcc phase in a Mg-Sc binary alloy by aging treatment. Metall Mater Trans A 50(7):3044–3047 Ogawa Y, Sutou Y, Ando D, Koike J, Somekawa H (2019) Ordering of the bcc phase in a Mg-Sc binary alloy by aging treatment. Metall Mater Trans A 50(7):3044–3047
128.
Zurück zum Zitat Yamagishi K, Ogawa Y, Ando D, Sutou Y, Koike J (2019) Room temperature superelasticity in a lightweight shape memory Mg alloy. Scr Mater 168:114–118 Yamagishi K, Ogawa Y, Ando D, Sutou Y, Koike J (2019) Room temperature superelasticity in a lightweight shape memory Mg alloy. Scr Mater 168:114–118
129.
Zurück zum Zitat Abhyankar A, D’Santhoshini BA, Kaul S, Nigam A (2008) Effect of site disorder on martensitic transformation in ferromagnetic Ni55Fe20Al25 alloy as inferred from magnetic and magneto-transport measurements. Adv Mater Res 52:77–84 Abhyankar A, D’Santhoshini BA, Kaul S, Nigam A (2008) Effect of site disorder on martensitic transformation in ferromagnetic Ni55Fe20Al25 alloy as inferred from magnetic and magneto-transport measurements. Adv Mater Res 52:77–84
130.
Zurück zum Zitat Chen S, Hsieh S, Lin H, Lin M, Huang J (2008) Electrical discharge machining of a NiAlFe ternary shape memory alloy. J Alloys Compd 464(1–2):446–451 Chen S, Hsieh S, Lin H, Lin M, Huang J (2008) Electrical discharge machining of a NiAlFe ternary shape memory alloy. J Alloys Compd 464(1–2):446–451
131.
Zurück zum Zitat Jiang C, Sordelet D, Gleeson B (2006) Effects of Pt on the elastic properties of B2 NiAl: a combined first-principles and experimental study. Acta Mater 54(9):2361–2369 Jiang C, Sordelet D, Gleeson B (2006) Effects of Pt on the elastic properties of B2 NiAl: a combined first-principles and experimental study. Acta Mater 54(9):2361–2369
132.
Zurück zum Zitat Monastyrsky GE, Ochin P, Odnosum VV, Pasko AY, Kolomytsev VI, Koval Y (2013) Martensitic transformation in Ni-Al-Pt high temperature shape memory alloys. Mater Sci Forum 738–739:506–511 Monastyrsky GE, Ochin P, Odnosum VV, Pasko AY, Kolomytsev VI, Koval Y (2013) Martensitic transformation in Ni-Al-Pt high temperature shape memory alloys. Mater Sci Forum 738–739:506–511
133.
Zurück zum Zitat Ozdemir O, Zeytin S, Bindal C (2010) Characterization of NiAl with cobalt produced by combustion synthesis. J Alloys Compd 508(1):216–221 Ozdemir O, Zeytin S, Bindal C (2010) Characterization of NiAl with cobalt produced by combustion synthesis. J Alloys Compd 508(1):216–221
134.
Zurück zum Zitat Pank D, Nathal M, Koss D (1990) Microstructure and mechanical properties of multiphase NiAl-based alloys. J Mater Res 5(5):942–949 Pank D, Nathal M, Koss D (1990) Microstructure and mechanical properties of multiphase NiAl-based alloys. J Mater Res 5(5):942–949
135.
Zurück zum Zitat Russell SM, Law CC, Blackburn MJ (1988) The effect of cobalt on martensitic toughening parameters in NiAl. MRS Proc 133:627 Russell SM, Law CC, Blackburn MJ (1988) The effect of cobalt on martensitic toughening parameters in NiAl. MRS Proc 133:627
136.
Zurück zum Zitat Valiullin AI, Kositsyna II, Kositsyn SV, Kataeva NV (2008) Stabilization of high-temperature shape memory effect in functional Ni–Al–Co martensitic alloys. Mater Sci Eng A 481–482:551–554 Valiullin AI, Kositsyna II, Kositsyn SV, Kataeva NV (2008) Stabilization of high-temperature shape memory effect in functional Ni–Al–Co martensitic alloys. Mater Sci Eng A 481–482:551–554
137.
Zurück zum Zitat Kang H-J, Wu S-K, Wu L-M (2010) Martensitic transformation of Ni64Al34Re2 shape memory alloy. Intermetallics 18(1):123–128 Kang H-J, Wu S-K, Wu L-M (2010) Martensitic transformation of Ni64Al34Re2 shape memory alloy. Intermetallics 18(1):123–128
138.
Zurück zum Zitat Sun B, Che X, Lin D, Yang G, Zhou Y (1995) The ductility of La-doped rapidly solidified NiAl. Scr Metall Mater 33(7):1145–1149 Sun B, Che X, Lin D, Yang G, Zhou Y (1995) The ductility of La-doped rapidly solidified NiAl. Scr Metall Mater 33(7):1145–1149
139.
Zurück zum Zitat Sordelet D, Besser M, Ott R, Zimmerman B, Porter W, Gleeson B (2007) Isothermal nature of martensite formation in Pt-modified β-NiAl alloys. Acta Mater 55(7):2433–2441 Sordelet D, Besser M, Ott R, Zimmerman B, Porter W, Gleeson B (2007) Isothermal nature of martensite formation in Pt-modified β-NiAl alloys. Acta Mater 55(7):2433–2441
140.
Zurück zum Zitat Kang H-J, Wu S-K, Wu L-M (2011) 3R and 14M martensitic transformations in as-rolled and annealed Ni64Al34.5Re1.5 shape memory alloy. J Alloys Compd 509(5):1619–1625 Kang H-J, Wu S-K, Wu L-M (2011) 3R and 14M martensitic transformations in as-rolled and annealed Ni64Al34.5Re1.5 shape memory alloy. J Alloys Compd 509(5):1619–1625
141.
Zurück zum Zitat Kaul S, Annie D’Santhoshini B, Abhyankar A, Barquin LF, Henry P (2006) Thermoelastic martensitic transformation in ferromagnetic Ni–Fe–Al alloys: effect of site disorder. Appl Phys Lett 89(9):093119 Kaul S, Annie D’Santhoshini B, Abhyankar A, Barquin LF, Henry P (2006) Thermoelastic martensitic transformation in ferromagnetic Ni–Fe–Al alloys: effect of site disorder. Appl Phys Lett 89(9):093119
142.
Zurück zum Zitat Kim HY, Miyazaki S (2004) Martensitic transformation behavior in Ni–Al and Ni–Al–Re melt-spun ribbons. Scr Mater 50(2):237–241 Kim HY, Miyazaki S (2004) Martensitic transformation behavior in Ni–Al and Ni–Al–Re melt-spun ribbons. Scr Mater 50(2):237–241
143.
Zurück zum Zitat Kim S, Kim M, Oh M, Hirano T, Wee D (2003) Phase transformation and microstructure of NiAl/Ni3Al alloys containing Ti. Scr Mater 48(4):443–448 Kim S, Kim M, Oh M, Hirano T, Wee D (2003) Phase transformation and microstructure of NiAl/Ni3Al alloys containing Ti. Scr Mater 48(4):443–448
144.
Zurück zum Zitat Chernenko V, Kanth BR, Mukhopadhyay P, Kaul S, Villa E, Gambardella A, Besseghini S (2008) Stress-induced and thermoelastic properties of Ni–Fe–Al melt-spun ribbon. Appl Phys Lett 93(14):141904 Chernenko V, Kanth BR, Mukhopadhyay P, Kaul S, Villa E, Gambardella A, Besseghini S (2008) Stress-induced and thermoelastic properties of Ni–Fe–Al melt-spun ribbon. Appl Phys Lett 93(14):141904
145.
Zurück zum Zitat Mukhopadhyay PK, Karmakar M, Rajini Kanth B, Kaul SN (2013) Experimental and theoretical investigations of the stress-induced twinning/detwinning in the martensite phase of a FSMA system. J Alloys Compd 577:S119–S122 Mukhopadhyay PK, Karmakar M, Rajini Kanth B, Kaul SN (2013) Experimental and theoretical investigations of the stress-induced twinning/detwinning in the martensite phase of a FSMA system. J Alloys Compd 577:S119–S122
146.
Zurück zum Zitat Okumura H, Uemura K (2011) Effects of rotation speed on microstructure and transition temperatures in Ni–Fe–Al melt-spun ribbons. Intermetallics 19(12):1996–2001 Okumura H, Uemura K (2011) Effects of rotation speed on microstructure and transition temperatures in Ni–Fe–Al melt-spun ribbons. Intermetallics 19(12):1996–2001
147.
Zurück zum Zitat Biffi CA, Agresti F, Casati R, Tuissi A (2015) Ni3Ta high temperature shape memory alloys: effect of B addition on the martensitic transformation and microstructure. Mater Today: Proc 2:S813–S816 Biffi CA, Agresti F, Casati R, Tuissi A (2015) Ni3Ta high temperature shape memory alloys: effect of B addition on the martensitic transformation and microstructure. Mater Today: Proc 2:S813–S816
148.
Zurück zum Zitat Firstov G, Koval YN, Van Humbeeck J, Ochin P (2008) Martensitic transformation and shape memory effect in Ni3Ta: a novel high-temperature shape memory alloy. Mater Sci Eng A 481:590–593 Firstov G, Koval YN, Van Humbeeck J, Ochin P (2008) Martensitic transformation and shape memory effect in Ni3Ta: a novel high-temperature shape memory alloy. Mater Sci Eng A 481:590–593
149.
Zurück zum Zitat Kosorukova T, Firstov G, Noël H, Ivanchenko V (2013) Crystal structure changes in the Ni3Ta intermetallic compound. Chem Metals Alloys 6(3–4):196–199 Kosorukova T, Firstov G, Noël H, Ivanchenko V (2013) Crystal structure changes in the Ni3Ta intermetallic compound. Chem Metals Alloys 6(3–4):196–199
150.
Zurück zum Zitat Rudajevova A (2010) Study of the thermal properties of a Ni3Ta shape memory alloy. Int J Thermophys 31(2):378–387 Rudajevova A (2010) Study of the thermal properties of a Ni3Ta shape memory alloy. Int J Thermophys 31(2):378–387
151.
Zurück zum Zitat Rudajevova A, Pospíšil J (2010) Shape memory behavior of a Ni3Ta alloy pre-deformed in compression. Mater Sci Eng A 527(12):2900–2905 Rudajevova A, Pospíšil J (2010) Shape memory behavior of a Ni3Ta alloy pre-deformed in compression. Mater Sci Eng A 527(12):2900–2905
152.
Zurück zum Zitat Rudajevova A, Pospíšil J (2011) Influence of anisotropy, the latent heat and the thermal history of alloy on martensitic transformation strain in Ni3Ta single crystal. J Alloys Compd 509(18):5500–5505 Rudajevova A, Pospíšil J (2011) Influence of anisotropy, the latent heat and the thermal history of alloy on martensitic transformation strain in Ni3Ta single crystal. J Alloys Compd 509(18):5500–5505
153.
Zurück zum Zitat Zhou C, Guo C, Li C, Du Z (2018) Thermodynamic optimization of the Ni–Ta system supported by the key experiments. Thermochim Acta 666:135–147 Zhou C, Guo C, Li C, Du Z (2018) Thermodynamic optimization of the Ni–Ta system supported by the key experiments. Thermochim Acta 666:135–147
154.
Zurück zum Zitat Otsuka K, Sawamura T, Shimizu K, Wayman CM (1971) Characteristics of the martensitic transformation in TiNi and the memory effect. Metall Trans 2(9):2583–2588 Otsuka K, Sawamura T, Shimizu K, Wayman CM (1971) Characteristics of the martensitic transformation in TiNi and the memory effect. Metall Trans 2(9):2583–2588
155.
Zurück zum Zitat Sandrock GD, Hehemann RF (1971) The observation of surface relief during the martensitic transformation in TiNi. Metallography 4(5):451–456 Sandrock GD, Hehemann RF (1971) The observation of surface relief during the martensitic transformation in TiNi. Metallography 4(5):451–456
156.
Zurück zum Zitat Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678 Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678
157.
Zurück zum Zitat Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MFX, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458 Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MFX, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458
158.
Zurück zum Zitat Pan CH, Wang YB, Pan HY (2015) Development of dynamically artificial flowers driven by shape memory alloy and pulse width modulation. In: 2015 IEEE international workshop on advanced robotics and its social impacts (ARSO), pp 1–6 Pan CH, Wang YB, Pan HY (2015) Development of dynamically artificial flowers driven by shape memory alloy and pulse width modulation. In: 2015 IEEE international workshop on advanced robotics and its social impacts (ARSO), pp 1–6
161.
Zurück zum Zitat Stoeckel D (1990) Shape memory actuators for automotive applications. Mater Des 11(6):302–307 Stoeckel D (1990) Shape memory actuators for automotive applications. Mater Des 11(6):302–307
162.
Zurück zum Zitat Jani JM, Leary M, Subic A (2014) Shape memory alloys in automotive applications. Appl Mech Mater 663:248–253 Jani JM, Leary M, Subic A (2014) Shape memory alloys in automotive applications. Appl Mech Mater 663:248–253
163.
Zurück zum Zitat Chillara VSC, Headings LM, Tsuruta R, Itakura E, Gandhi U, Dapino MJ (2019) Shape memory alloy–actuated prestressed composites with application to morphing automotive fender skirts. J Intell Mater Syst Struct 30(3):479–494 Chillara VSC, Headings LM, Tsuruta R, Itakura E, Gandhi U, Dapino MJ (2019) Shape memory alloy–actuated prestressed composites with application to morphing automotive fender skirts. J Intell Mater Syst Struct 30(3):479–494
164.
Zurück zum Zitat Ishikawa H, Sutou Y, Omori T, Oikawa K, Ishida K, Yoshikawa A, Umetsu R, Kainuma R (2007) Pd–In–Fe shape memory alloy. Appl Phys Lett 90(26):261906 Ishikawa H, Sutou Y, Omori T, Oikawa K, Ishida K, Yoshikawa A, Umetsu R, Kainuma R (2007) Pd–In–Fe shape memory alloy. Appl Phys Lett 90(26):261906
165.
Zurück zum Zitat Shen Q, Sun W, Wei Z, Liu J (2019) Highly undercooled Pd59.3In23.2Fe17.5 alloy: shape memory effect, linear superelasticity and elastocaloric property. Scr Mater 160:58–61 Shen Q, Sun W, Wei Z, Liu J (2019) Highly undercooled Pd59.3In23.2Fe17.5 alloy: shape memory effect, linear superelasticity and elastocaloric property. Scr Mater 160:58–61
166.
Zurück zum Zitat Shen Q, Zhao D, Sun W, Wei Z, Liu J (2018) Microstructure, martensitic transformation and elastocaloric effect in Pd-In-Fe polycrystalline shape memory alloys. Intermetallics 100:27–31 Shen Q, Zhao D, Sun W, Wei Z, Liu J (2018) Microstructure, martensitic transformation and elastocaloric effect in Pd-In-Fe polycrystalline shape memory alloys. Intermetallics 100:27–31
167.
Zurück zum Zitat Chieda Y, Kanomata T, Umetsu RY, Okada H, Nishihara H, Kimura A, Nagasako M, Kainuma R, Ziebeck KRA (2013) Magnetic phase diagram of Heuselr alloys Pd2Mn1+xSn1−x. J Alloys Compd 554:335–339 Chieda Y, Kanomata T, Umetsu RY, Okada H, Nishihara H, Kimura A, Nagasako M, Kainuma R, Ziebeck KRA (2013) Magnetic phase diagram of Heuselr alloys Pd2Mn1+xSn1−x. J Alloys Compd 554:335–339
168.
Zurück zum Zitat Ito T, Kimura Y, Xu X, Han K, Umetsu RY, Omori T, Kainuma R (2019) Martensitic transformation and shape memory effect in Pd50Mn50−xGax alloys. J Alloys Compd 805:379–387 Ito T, Kimura Y, Xu X, Han K, Umetsu RY, Omori T, Kainuma R (2019) Martensitic transformation and shape memory effect in Pd50Mn50−xGax alloys. J Alloys Compd 805:379–387
169.
Zurück zum Zitat Kanomata T, Chieda Y, Okada H, Nishihara H, Kimura A, Nagasako M, Umetsu RY, Kainuma R, Ziebeck KRA (2012) Martensitic transition of Mn-rich Pd–Mn–Sn alloy. J Alloys Compd 541:392–395 Kanomata T, Chieda Y, Okada H, Nishihara H, Kimura A, Nagasako M, Umetsu RY, Kainuma R, Ziebeck KRA (2012) Martensitic transition of Mn-rich Pd–Mn–Sn alloy. J Alloys Compd 541:392–395
170.
Zurück zum Zitat Kanomata T, Endo K, Chieda Y, Sugawara T, Obara K, Shishido T, Matsubayashi K, Uwatoko Y, Nishihara H, Umetsu RY, Nagasako M, Kainuma R (2010) Magnetic properties of Mn-rich Pd2MnSn Heusler alloys. J Alloys Compd 505(1):29–33 Kanomata T, Endo K, Chieda Y, Sugawara T, Obara K, Shishido T, Matsubayashi K, Uwatoko Y, Nishihara H, Umetsu RY, Nagasako M, Kainuma R (2010) Magnetic properties of Mn-rich Pd2MnSn Heusler alloys. J Alloys Compd 505(1):29–33
171.
Zurück zum Zitat Xu X, Okada H, Chieda Y, Aizawa N, Takase D, Nishihara H, Sakon T, Han K, Ito T, Adachi Y, Kihara T, Kainuma R, Kanomata T (2019) Magnetoresistance and thermal transformation arrest in Pd2Mn1.4Sn0.6 Heusler alloys. Materials 12(14):2308 Xu X, Okada H, Chieda Y, Aizawa N, Takase D, Nishihara H, Sakon T, Han K, Ito T, Adachi Y, Kihara T, Kainuma R, Kanomata T (2019) Magnetoresistance and thermal transformation arrest in Pd2Mn1.4Sn0.6 Heusler alloys. Materials 12(14):2308
172.
Zurück zum Zitat Chastaing K, Denquin A, Portier R, Vermaut P (2008) High-temperature shape memory alloys based on the RuNb system. Mater Sci Eng A 481:702–706 Chastaing K, Denquin A, Portier R, Vermaut P (2008) High-temperature shape memory alloys based on the RuNb system. Mater Sci Eng A 481:702–706
173.
Zurück zum Zitat Denquin A, Chastaing K, Vermaut P, Caillard D, Van Humbeeck J, Portier R (2009) Shape recovery in RuNb‐based high temperature shape memory alloys. In: International conference on martensitic transformations (ICOMAT), Wiley, Hoboken, pp 465–471 Denquin A, Chastaing K, Vermaut P, Caillard D, Van Humbeeck J, Portier R (2009) Shape recovery in RuNb‐based high temperature shape memory alloys. In: International conference on martensitic transformations (ICOMAT), Wiley, Hoboken, pp 465–471
174.
Zurück zum Zitat Dirand L, Nó M, Chastaing K, Denquin A, San Juan J (2012) Internal friction and dynamic modulus in Ru-50Nb ultra-high temperature shape memory alloys. Appl Phys Lett 101(16):161909 Dirand L, Nó M, Chastaing K, Denquin A, San Juan J (2012) Internal friction and dynamic modulus in Ru-50Nb ultra-high temperature shape memory alloys. Appl Phys Lett 101(16):161909
175.
Zurück zum Zitat Fonda R, Vandermeer R (1997) Crystallography and microstructure of TaRu. Philos Mag A 76(1):119–133 Fonda R, Vandermeer R (1997) Crystallography and microstructure of TaRu. Philos Mag A 76(1):119–133
176.
Zurück zum Zitat Gao X, Zheng Y, Cai W, Zhang S, Zhao L (2004) Microstructure, compression property and shape memory effect of equiatomic TaRu high temperature shape memory alloy. J Mater Sci Technol 20(1):97–98 Gao X, Zheng Y, Cai W, Zhang S, Zhao L (2004) Microstructure, compression property and shape memory effect of equiatomic TaRu high temperature shape memory alloy. J Mater Sci Technol 20(1):97–98
177.
Zurück zum Zitat He Z-R, Zhou J-E, Furuya Y (2003) Effect of Ta content on martensitic transformation behavior of RuTa ultrahigh temperature shape memory alloys. Mater Sci Eng A 348(1):36–40 He Z-R, Zhou J-E, Furuya Y (2003) Effect of Ta content on martensitic transformation behavior of RuTa ultrahigh temperature shape memory alloys. Mater Sci Eng A 348(1):36–40
178.
Zurück zum Zitat Gao X, Cai W, Zheng Y, Zhao L (2006) Martensitic transformation and microstructure in Nb–Ru–Fe shape memory alloys. Mater Sci Eng A 438:862–864 Gao X, Cai W, Zheng Y, Zhao L (2006) Martensitic transformation and microstructure in Nb–Ru–Fe shape memory alloys. Mater Sci Eng A 438:862–864
179.
Zurück zum Zitat Tan C-L, Tian X-H, Cai W (2008) Effect of Fe on martensitic transformation of NbRu high-temperature shape memory alloys: experimental and theoretical study. Chin Phys Lett 25(9):3372 Tan C-L, Tian X-H, Cai W (2008) Effect of Fe on martensitic transformation of NbRu high-temperature shape memory alloys: experimental and theoretical study. Chin Phys Lett 25(9):3372
180.
Zurück zum Zitat Declairieux C, Denquin A, Ochin P, Portier R, Vermaut P (2011) On the potential of Ti50Au50 compound as a high temperature shape memory alloy. Intermetallics 19(10):1461–1465 Declairieux C, Denquin A, Ochin P, Portier R, Vermaut P (2011) On the potential of Ti50Au50 compound as a high temperature shape memory alloy. Intermetallics 19(10):1461–1465
181.
Zurück zum Zitat Shim H, Tahara M, Inamura T, Goto K, Yamabe-Mitarai Y, Hosoda H (2015) Oxidation behavior of Au-55 mol% Ti high temperature shape memory alloy during heating in Ar-50 vol% O2 environment. Mater Trans 56(4):600–604 Shim H, Tahara M, Inamura T, Goto K, Yamabe-Mitarai Y, Hosoda H (2015) Oxidation behavior of Au-55 mol% Ti high temperature shape memory alloy during heating in Ar-50 vol% O2 environment. Mater Trans 56(4):600–604
182.
Zurück zum Zitat Kulińska A, Wodniecki P (2014) TiPd shape memory alloy studied by PAC method. Acta Phys Pol A 4(125):936–939 Kulińska A, Wodniecki P (2014) TiPd shape memory alloy studied by PAC method. Acta Phys Pol A 4(125):936–939
183.
Zurück zum Zitat Matsuda M, Yano S, Nishida M (2011) Morphology and crystallography of martensite plate with long period stacking structure in Ti-Pd shape memory alloy. Mater Trans 52(11):2016–2021 Matsuda M, Yano S, Nishida M (2011) Morphology and crystallography of martensite plate with long period stacking structure in Ti-Pd shape memory alloy. Mater Trans 52(11):2016–2021
184.
Zurück zum Zitat Solomon VC, Nishida M (2003) Morphological and crystallographic aspects of Cl1b-type precipitates nucleated in martensitic and parent phase matrices in Ti-rich Ti-Pd shape memory alloys. J Phys IV France 112:1039–1042 Solomon VC, Nishida M (2003) Morphological and crystallographic aspects of Cl1b-type precipitates nucleated in martensitic and parent phase matrices in Ti-rich Ti-Pd shape memory alloys. J Phys IV France 112:1039–1042
185.
Zurück zum Zitat Yamamuro T, Morizono Y, Honjyo J, Nishida M (2006) Phase equilibrium and martensitic transformation in near equiatomic TiPd alloys. Mater Sci Eng A 438:327–331 Yamamuro T, Morizono Y, Honjyo J, Nishida M (2006) Phase equilibrium and martensitic transformation in near equiatomic TiPd alloys. Mater Sci Eng A 438:327–331
186.
Zurück zum Zitat Schwartz A, Tanner L (1994) Phase transformations and phase relations in Ti50Pd(50-x)TMx alloys. Chem Mater Sci, Lawrence Livermore National Laboratory, pp 4–6 Schwartz A, Tanner L (1994) Phase transformations and phase relations in Ti50Pd(50-x)TMx alloys. Chem Mater Sci, Lawrence Livermore National Laboratory, pp 4–6
187.
Zurück zum Zitat Schwartz A, Tanner L (1995) Phase transformations and phase relations in the TiPd-TiCr pseudobinary system. 1: Experimental observations. Scr Metall Mater (United States) 32(5):675–680 Schwartz A, Tanner L (1995) Phase transformations and phase relations in the TiPd-TiCr pseudobinary system. 1: Experimental observations. Scr Metall Mater (United States) 32(5):675–680
188.
Zurück zum Zitat Frankel D, Jiang T, Olson GB (2015) Design of a fatigue resistant Ni-free PdTi-base SMA. Mater Today: Proc 2:S801–S804 Frankel D, Jiang T, Olson GB (2015) Design of a fatigue resistant Ni-free PdTi-base SMA. Mater Today: Proc 2:S801–S804
189.
Zurück zum Zitat Chikosha S, Chikwanda HK (2013) TiPt HTSMA produced by spark plasma sintering of elemental powders. In: Materials science forum, vol 738. Trans Tech Publ, Switzerland, pp 579–583 Chikosha S, Chikwanda HK (2013) TiPt HTSMA produced by spark plasma sintering of elemental powders. In: Materials science forum, vol 738. Trans Tech Publ, Switzerland, pp 579–583
190.
Zurück zum Zitat Chikwanda HK, Yamabe-Mitarai Y, Chikosha S (2011) Phase analyses of a TtPt alloy synthesized by spark plasma sintering. In: Materials science forum, vol 675. Trans Tech Publ, Switzerland, pp 1143–1146 Chikwanda HK, Yamabe-Mitarai Y, Chikosha S (2011) Phase analyses of a TtPt alloy synthesized by spark plasma sintering. In: Materials science forum, vol 675. Trans Tech Publ, Switzerland, pp 1143–1146
191.
Zurück zum Zitat Mahlatji M, Chikosha S, Chikwanda HK, Stumpf W, Siyasiya C (2014) Thermal properties of amorphous TiPt alloy produced by mechanical alloying. Adv Mater Res 1019:372–378 Mahlatji M, Chikosha S, Chikwanda HK, Stumpf W, Siyasiya C (2014) Thermal properties of amorphous TiPt alloy produced by mechanical alloying. Adv Mater Res 1019:372–378
192.
Zurück zum Zitat Wadood A, Yamabe-Mitarai Y (2014) TiPt–Co and TiPt–Ru high temperature shape memory alloys. Mater Sci Eng A 601:106–110 Wadood A, Yamabe-Mitarai Y (2014) TiPt–Co and TiPt–Ru high temperature shape memory alloys. Mater Sci Eng A 601:106–110
193.
Zurück zum Zitat Wadood A, Takahashi M, Takahashi S, Hosoda H, Yamabe-Mitarai Y (2013) High-temperature mechanical and shape memory properties of TiPt–Zr and TiPt–Ru alloys. Mater Sci Eng A 564:34–41 Wadood A, Takahashi M, Takahashi S, Hosoda H, Yamabe-Mitarai Y (2013) High-temperature mechanical and shape memory properties of TiPt–Zr and TiPt–Ru alloys. Mater Sci Eng A 564:34–41
194.
Zurück zum Zitat Yamabe-Mitarai Y, Arockiakumar R, Wadood A, Suresh K, Kitashima T, Hara T, Shimojo M, Tasaki W, Takahashi M, Takahashi S (2015) Ti (Pt, Pd, Au) based high temperature shape memory alloys. Mater Today: Proc 2:S517–S522 Yamabe-Mitarai Y, Arockiakumar R, Wadood A, Suresh K, Kitashima T, Hara T, Shimojo M, Tasaki W, Takahashi M, Takahashi S (2015) Ti (Pt, Pd, Au) based high temperature shape memory alloys. Mater Today: Proc 2:S517–S522
195.
Zurück zum Zitat Semenova EL, Petyukh V, Kudryavtsev YV (1995) The effect of cobalt and nickel on transformation in TiRh. J Alloys Compd 230(2):115–119 Semenova EL, Petyukh V, Kudryavtsev YV (1995) The effect of cobalt and nickel on transformation in TiRh. J Alloys Compd 230(2):115–119
196.
Zurück zum Zitat Wu AS, Brown DW, Clausen B, Elmer JW (2017) The influence of impurities on the crystal structure and mechanical properties of additive manufactured U–14at.% Nb. Scr Mater 130:59–638 Wu AS, Brown DW, Clausen B, Elmer JW (2017) The influence of impurities on the crystal structure and mechanical properties of additive manufactured U–14at.% Nb. Scr Mater 130:59–638
197.
Zurück zum Zitat Zhang C, Wang H, Li J, Pang B, Xia Y, Liu Y, Sun G, Zhang X, Fa T, Wang X (2019) The aging-effect-modulated mechanical behavior in U-Nb shape memory alloys through the modified twinning-detwinning process of the α ″phase. Mater Des 162:94–105 Zhang C, Wang H, Li J, Pang B, Xia Y, Liu Y, Sun G, Zhang X, Fa T, Wang X (2019) The aging-effect-modulated mechanical behavior in U-Nb shape memory alloys through the modified twinning-detwinning process of the α ″phase. Mater Des 162:94–105
198.
Zurück zum Zitat Field R, Brown D, Thoma D (2005) Texture development and deformation mechanisms during uniaxial straining of U-Nb shape-memory alloys. Philos Mag 85(13):1441–1457 Field R, Brown D, Thoma D (2005) Texture development and deformation mechanisms during uniaxial straining of U-Nb shape-memory alloys. Philos Mag 85(13):1441–1457
199.
Zurück zum Zitat Tupper CN, Brown DW, Field RD, Sisneros TA, Clausen B (2012) Large strain deformation in uranium 6 wt pct niobium. Metall Mater Trans A 43(2):520–530 Tupper CN, Brown DW, Field RD, Sisneros TA, Clausen B (2012) Large strain deformation in uranium 6 wt pct niobium. Metall Mater Trans A 43(2):520–530
201.
Zurück zum Zitat Clarke AJ, Field RD, Dickerson PO, McCabe RJ, Swadener JG, Hackenberg R, Thoma D (2009) A microcompression study of shape-memory deformation in U–13 at.% Nb. Scr Mater 60(10):890–892 Clarke AJ, Field RD, Dickerson PO, McCabe RJ, Swadener JG, Hackenberg R, Thoma D (2009) A microcompression study of shape-memory deformation in U–13 at.% Nb. Scr Mater 60(10):890–892
202.
Zurück zum Zitat Jackson RJ (1970) Reversible martensitic transformations between transition phases of uranium-base niobium alloys, Dow Chemical Co., Golden, Colo. Rocky Flats Div., pp 1–11 Jackson RJ (1970) Reversible martensitic transformations between transition phases of uranium-base niobium alloys, Dow Chemical Co., Golden, Colo. Rocky Flats Div., pp 1–11
203.
Zurück zum Zitat Vandermeer R, Ogle J, Northcutt W (1981) A phenomenological study of the shape memory effect in polycrystalline uranium-niobium alloys. Metall Trans A 12(5):733–741 Vandermeer R, Ogle J, Northcutt W (1981) A phenomenological study of the shape memory effect in polycrystalline uranium-niobium alloys. Metall Trans A 12(5):733–741
204.
Zurück zum Zitat Gao W, Yi X, Sun B, Meng X, Cai W, Zhao L (2017) Microstructural evolution of martensite during deformation in Zr50Cu50 shape memory alloy. Acta Mater 132:405–415 Gao W, Yi X, Sun B, Meng X, Cai W, Zhao L (2017) Microstructural evolution of martensite during deformation in Zr50Cu50 shape memory alloy. Acta Mater 132:405–415
205.
Zurück zum Zitat Meng X, Gao W, Gao Z, Cai W, Zhao L (2014) Substructure and interface of the superstructure martensite in Zr50Cu50 high temperature shape memory alloy. Mater Lett 117:221–224 Meng X, Gao W, Gao Z, Cai W, Zhao L (2014) Substructure and interface of the superstructure martensite in Zr50Cu50 high temperature shape memory alloy. Mater Lett 117:221–224
206.
Zurück zum Zitat Waterstrat RM, Kuentzler R (2003) Structural instability in the B2-type ordered alloys Zr (Ru, Rh) and Zr (Ru, Pd). J Alloys Compd 359(1–2):133–138 Waterstrat RM, Kuentzler R (2003) Structural instability in the B2-type ordered alloys Zr (Ru, Rh) and Zr (Ru, Pd). J Alloys Compd 359(1–2):133–138
207.
Zurück zum Zitat Filippov V, Yagodin D, Ryltseva A, Estemirova SK, Shunyaev KY (2017) The study of eutectoid decomposition kinetics of Cu50Zr50 alloy. J Therm Anal Calorim 127(1):773–778 Filippov V, Yagodin D, Ryltseva A, Estemirova SK, Shunyaev KY (2017) The study of eutectoid decomposition kinetics of Cu50Zr50 alloy. J Therm Anal Calorim 127(1):773–778
208.
Zurück zum Zitat Biffi C, Coduri M, Yoshida H, Soejima Y, Nishida M, Tuissi A (2015) The effect of thermal cycling on the martensitic transformation in equiatomic CuZr shape memory alloy. J Alloys Compd 653:591–595 Biffi C, Coduri M, Yoshida H, Soejima Y, Nishida M, Tuissi A (2015) The effect of thermal cycling on the martensitic transformation in equiatomic CuZr shape memory alloy. J Alloys Compd 653:591–595
209.
Zurück zum Zitat Zheng J, Miao Y, Zhang H, Chen S, Lee D, Arróyave R, Vlassak JJ (2018) Phase transformations in equiatomic CuZr shape memory thin films analyzed by differential nanocalorimetry. Acta Mater 159:320–331 Zheng J, Miao Y, Zhang H, Chen S, Lee D, Arróyave R, Vlassak JJ (2018) Phase transformations in equiatomic CuZr shape memory thin films analyzed by differential nanocalorimetry. Acta Mater 159:320–331
210.
Zurück zum Zitat Semenova OL, Kudryavtsev YV, Petyukh VM, Samelyuk AV (2011) Constitution of ZrCo–ZrIr alloys. Powder Metall Met Ceram 49(11):682 Semenova OL, Kudryavtsev YV, Petyukh VM, Samelyuk AV (2011) Constitution of ZrCo–ZrIr alloys. Powder Metall Met Ceram 49(11):682
211.
Zurück zum Zitat Nishiura T, Yamamuro T, Hashimoto D, Morizono Y, Nishida M (2006) Martensitic transformation and phase equilibrium in near equiatomic Zr–Pd alloys. Mater Sci Eng A 438:852–856 Nishiura T, Yamamuro T, Hashimoto D, Morizono Y, Nishida M (2006) Martensitic transformation and phase equilibrium in near equiatomic Zr–Pd alloys. Mater Sci Eng A 438:852–856
212.
Zurück zum Zitat Buehler WJ, Wang FE (1968) A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Eng 1(1):105–120 Buehler WJ, Wang FE (1968) A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Eng 1(1):105–120
213.
Zurück zum Zitat Mills SH, Noebe RD, Dellacorte C, Amin-Ahmadi B, Stebner AP (2020) Development of nickel-rich nickel–titanium–hafnium alloys for tribological applications. Shape Mem Superelast 6(3):311–322 Mills SH, Noebe RD, Dellacorte C, Amin-Ahmadi B, Stebner AP (2020) Development of nickel-rich nickel–titanium–hafnium alloys for tribological applications. Shape Mem Superelast 6(3):311–322
214.
Zurück zum Zitat Mills SH, Dellacorte C, Noebe RD, Amin-Ahmadi B, Stebner AP (2021) Rolling contact fatigue deformation mechanisms of nickel-rich nickel-titanium-hafnium alloys. Acta Mater 209:116784 Mills SH, Dellacorte C, Noebe RD, Amin-Ahmadi B, Stebner AP (2021) Rolling contact fatigue deformation mechanisms of nickel-rich nickel-titanium-hafnium alloys. Acta Mater 209:116784
215.
Zurück zum Zitat Arditti SJ, Avedikian SZ, Bernstein BS (1971) Articles with polymeric memory and method of constructing same, Google Patents Arditti SJ, Avedikian SZ, Bernstein BS (1971) Articles with polymeric memory and method of constructing same, Google Patents
216.
Zurück zum Zitat Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27(14):1168–1172 Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27(14):1168–1172
217.
Zurück zum Zitat Chen S, Hu J, Yuen C-W, Chan L (2009) Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties. Polymer 50(19):4424–4428 Chen S, Hu J, Yuen C-W, Chan L (2009) Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties. Polymer 50(19):4424–4428
218.
Zurück zum Zitat Luo X, Mather PT (2009) Preparation and characterization of shape memory elastomeric composites. Macromolecules 42:7251–7253 Luo X, Mather PT (2009) Preparation and characterization of shape memory elastomeric composites. Macromolecules 42:7251–7253
219.
Zurück zum Zitat Lee H-F, Yu HH (2011) Study of electroactive shape memory polyurethane–carbon nanotube hybrids. Soft Matter 8:3801–3807 Lee H-F, Yu HH (2011) Study of electroactive shape memory polyurethane–carbon nanotube hybrids. Soft Matter 8:3801–3807
220.
Zurück zum Zitat Wu L, Jin C, Sun X (2011) Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups. Biomacromol 12(1):235–241 Wu L, Jin C, Sun X (2011) Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups. Biomacromol 12(1):235–241
221.
Zurück zum Zitat Lu XL, Cai W, Gao Z, Tang WJ (2007) Shape memory effects of poly(L-lactide) and its copolymer with poly(ε-caprolactone). Polym Bull 58(2):381–391 Lu XL, Cai W, Gao Z, Tang WJ (2007) Shape memory effects of poly(L-lactide) and its copolymer with poly(ε-caprolactone). Polym Bull 58(2):381–391
222.
Zurück zum Zitat Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22(31):3388–3410 Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22(31):3388–3410
223.
Zurück zum Zitat Xie T (2011) Recent advances in polymer shape memory. Polymer 52(22):4985–5000 Xie T (2011) Recent advances in polymer shape memory. Polymer 52(22):4985–5000
224.
Zurück zum Zitat Reyes-Morel PE, Cherng J-S, Chen I-W (1988) Transformation plasticity of CeO2-stabilized tetragonal zirconia polycrystals: II, pseudoelasticity and shape memory effect. J Am Ceram Soc 71(8):648–657 Reyes-Morel PE, Cherng J-S, Chen I-W (1988) Transformation plasticity of CeO2-stabilized tetragonal zirconia polycrystals: II, pseudoelasticity and shape memory effect. J Am Ceram Soc 71(8):648–657
225.
Zurück zum Zitat Arun D, Chakravarthy P, Arockiakumar R, Santhosh B (2018) Shape memory materials. CRC Press, Boca Raton Arun D, Chakravarthy P, Arockiakumar R, Santhosh B (2018) Shape memory materials. CRC Press, Boca Raton
Metadaten
Titel
Shape Memory Materials Analysis and Research Tool (SM2ART): Finding Data Anomalies and Trends
verfasst von
P. E. Caltagirone
O. Benafan
Publikationsdatum
25.07.2023
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 4/2023
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-023-00457-7

Weitere Artikel der Ausgabe 4/2023

Shape Memory and Superelasticity 4/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.