Skip to main content

08.11.2018 | Original Article

Shear stress and blood trauma under constant and pulse-modulated speed CF-VAD operations: CFD analysis of the HVAD

verfasst von: Zengsheng Chen, Sofen K. Jena, Guruprasad A. Giridharan, Michael A. Sobieski, Steven C. Koenig, Mark S. Slaughter, Bartley P. Griffith, Zhongjun J. Wu

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modulation of pump speed has been proposed and implemented clinically to improve vascular pulsatility in continuous flow ventricular assist device patient. The flow dynamics of the HVAD with a promising asynchronous pump speed modulation and its potential risk for device-induced blood trauma was investigated numerically. The boundary conditions at the pump inlet and outlet were defined using the pressure waveforms adapted from the experimentally recorded ventricular and arterial pressure waveforms in a large animal ischemic heart failure (IHF) model supported by the HVAD operated at constant and modulated pump speeds. Shear stress fields and hemolysis indices were derived from the simulated flow fields. The overall features of the computationally generated flow waveforms at simulated constant and pulse-modulated speed operations matched with those of the experimentally recorded flow waveforms. The simulations showed that the shear stress field and hemolysis index vary throughout the cardiac cycle under the constant speed operation, and also as a function of modulation profile under modulated speed operation. The computational model did not demonstrate any differences in the time average hemolysis index between constant and modulated pump speed operations, thereby predicting pulse-modulated speed operation may help to restore vascular pulsatility without any further increased risk of blood trauma.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire D, Mohler ER III, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB, American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2015) Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131(4):e29–e322 Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire D, Mohler ER III, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB, American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2015) Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131(4):e29–e322
2.
Zurück zum Zitat Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, Sun B, Tatooles AJ, Delgado RM III, Long JW, Wozniak TC, Ghumman W, Farrar DJ, Frazier OH, HeartMate II Investigators (2009) Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 361(23):2241–2251CrossRefPubMed Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, Sun B, Tatooles AJ, Delgado RM III, Long JW, Wozniak TC, Ghumman W, Farrar DJ, Frazier OH, HeartMate II Investigators (2009) Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 361(23):2241–2251CrossRefPubMed
4.
Zurück zum Zitat Sifain AR, Schwarz KQ, Hallinan W, Massey HT, Alexis JD (2014) Ventricular assist device thrombosis following recovery of left ventricular function. ASAIO J 60(2):243–245CrossRefPubMed Sifain AR, Schwarz KQ, Hallinan W, Massey HT, Alexis JD (2014) Ventricular assist device thrombosis following recovery of left ventricular function. ASAIO J 60(2):243–245CrossRefPubMed
5.
Zurück zum Zitat Morgan JA, Brewer RJ, Nemeh HW, Gerlach B, Lanfear DE, Williams CT, Paone G (2014) Stroke while on long-term left ventricular assist device support: incidence, outcome, and predictors. ASAIO J 60(3):284–289CrossRef Morgan JA, Brewer RJ, Nemeh HW, Gerlach B, Lanfear DE, Williams CT, Paone G (2014) Stroke while on long-term left ventricular assist device support: incidence, outcome, and predictors. ASAIO J 60(3):284–289CrossRef
6.
Zurück zum Zitat Crow S, John R, Boyle A, Shumway S, Liao K, Colvin-Adams M, Toninato C, Missov E, Pritzker M, Martin C, Garry D, Thomas W, Joyce L (2009) Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. J Thorac Cardiovasc Surg 137:208–215CrossRef Crow S, John R, Boyle A, Shumway S, Liao K, Colvin-Adams M, Toninato C, Missov E, Pritzker M, Martin C, Garry D, Thomas W, Joyce L (2009) Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. J Thorac Cardiovasc Surg 137:208–215CrossRef
7.
Zurück zum Zitat Pak SW, Uriel N, Takayama H, Cappleman S, Song R, Colombo PC, Charles S, Mancini D, Gillam L, Naka Y, Jorde UP (2010) Prevalence of de novo aortic insufficiency during long-term support with left ventricular assist devices. J Heart Lung Transplant 29:1172–1176CrossRefPubMed Pak SW, Uriel N, Takayama H, Cappleman S, Song R, Colombo PC, Charles S, Mancini D, Gillam L, Naka Y, Jorde UP (2010) Prevalence of de novo aortic insufficiency during long-term support with left ventricular assist devices. J Heart Lung Transplant 29:1172–1176CrossRefPubMed
8.
Zurück zum Zitat Krabatsch T, Schweiger M, Dandel M, Stepanenko A, Drews T, Potapov E, Pasic M, Weng YG, Huebler M, Hetzer R (2011) Is bridge to recovery more likely with pulsatile left ventricular assist devices than with nonpulsatile-flow systems? Ann Thorac Surg 91(5):1335–1340CrossRefPubMed Krabatsch T, Schweiger M, Dandel M, Stepanenko A, Drews T, Potapov E, Pasic M, Weng YG, Huebler M, Hetzer R (2011) Is bridge to recovery more likely with pulsatile left ventricular assist devices than with nonpulsatile-flow systems? Ann Thorac Surg 91(5):1335–1340CrossRefPubMed
9.
Zurück zum Zitat Bourque K, Dague C, Farrar D, Harms K, Tamez D, Cohn W, Tuzun E, Poirier V, Frazier OH (2006) In vivo assessment of a rotary left ventricular assist device-induced artificial pulse in the proximal and distal aorta. Artif Organs 30(8):638–642CrossRefPubMed Bourque K, Dague C, Farrar D, Harms K, Tamez D, Cohn W, Tuzun E, Poirier V, Frazier OH (2006) In vivo assessment of a rotary left ventricular assist device-induced artificial pulse in the proximal and distal aorta. Artif Organs 30(8):638–642CrossRefPubMed
10.
Zurück zum Zitat Frazier OH (2010) Unforeseen consequences of therapy with continuous-flow pumps. Circ Heart Fail 3(6):647–649CrossRefPubMed Frazier OH (2010) Unforeseen consequences of therapy with continuous-flow pumps. Circ Heart Fail 3(6):647–649CrossRefPubMed
11.
Zurück zum Zitat Ising M, Warren S, Sobieski M, Slaughter M, Koenig S, Giridharan G (2011) Flow modulation algorithms for continuous flow left ventricular assist devices to increase vascular pulsatility: a computer simulation study. Cardiovasc Eng Technol 2:90–100CrossRef Ising M, Warren S, Sobieski M, Slaughter M, Koenig S, Giridharan G (2011) Flow modulation algorithms for continuous flow left ventricular assist devices to increase vascular pulsatility: a computer simulation study. Cardiovasc Eng Technol 2:90–100CrossRef
12.
Zurück zum Zitat Soucy KG, Giridharan GA, Choi Y, Sobieski MA, Monreal G, Cheng A, Schumer E, Slaughter MS, Koenig SC (2015) Rotary pump speed modulation for generating pulsatile flow and phasic left ventricular volume unloading in a bovine model of chronic ischemic heart failure. J Heart Lung Transplant 34(1):122–131CrossRefPubMed Soucy KG, Giridharan GA, Choi Y, Sobieski MA, Monreal G, Cheng A, Schumer E, Slaughter MS, Koenig SC (2015) Rotary pump speed modulation for generating pulsatile flow and phasic left ventricular volume unloading in a bovine model of chronic ischemic heart failure. J Heart Lung Transplant 34(1):122–131CrossRefPubMed
13.
Zurück zum Zitat Moazami N, Fukamachi K, Kobayashi M, Smedira NG, Hoercher KJ, Massiello A, Lee S, Horvath DJ, Starling RC (2013) Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice. J Heart Lung Transplant 32:1–11CrossRefPubMed Moazami N, Fukamachi K, Kobayashi M, Smedira NG, Hoercher KJ, Massiello A, Lee S, Horvath DJ, Starling RC (2013) Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice. J Heart Lung Transplant 32:1–11CrossRefPubMed
14.
Zurück zum Zitat Nammakie E, Niroomand-Oscuii H, Koochaki M, Ghalichi F (2017) Computational fluid dynamics-based study of possibility of generating pulsatile blood flow via a continuous-flow VAD. Med Biol Eng Comput 55(1):167–178CrossRefPubMed Nammakie E, Niroomand-Oscuii H, Koochaki M, Ghalichi F (2017) Computational fluid dynamics-based study of possibility of generating pulsatile blood flow via a continuous-flow VAD. Med Biol Eng Comput 55(1):167–178CrossRefPubMed
15.
Zurück zum Zitat Roache PJ (1997) Quantification of uncertainty in computational fluid dynamics. Annu Rev Fluid Mech 29:123–160CrossRef Roache PJ (1997) Quantification of uncertainty in computational fluid dynamics. Annu Rev Fluid Mech 29:123–160CrossRef
16.
Zurück zum Zitat Fraser KH, Zhang T, Taskin ME, Griffith BP, Wu ZJ (2012) A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. J Biomech Eng 134(8):081002CrossRefPubMed Fraser KH, Zhang T, Taskin ME, Griffith BP, Wu ZJ (2012) A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. J Biomech Eng 134(8):081002CrossRefPubMed
17.
Zurück zum Zitat Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32:1598–1605CrossRef Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32:1598–1605CrossRef
18.
Zurück zum Zitat Jung Y, Baek J (2008) A numerical study on the unsteady flow behavior and the performance of an automotive sirocco fan. J Mech Sci Technol 22(10):1889–1895CrossRef Jung Y, Baek J (2008) A numerical study on the unsteady flow behavior and the performance of an automotive sirocco fan. J Mech Sci Technol 22(10):1889–1895CrossRef
19.
Zurück zum Zitat Bludszuweit C (1995) Model for a general mechanical blood damage prediction. Artif Organs 19:583–598CrossRefPubMed Bludszuweit C (1995) Model for a general mechanical blood damage prediction. Artif Organs 19:583–598CrossRefPubMed
20.
Zurück zum Zitat Taskin ME, Fraser KH, Zhang T, Wu C, Griffith BP, Wu ZJ (2012) Evaluation of Eulerian and Lagrangian models for hemolysis estimation. ASAIO J 58(4):363–372CrossRefPubMed Taskin ME, Fraser KH, Zhang T, Wu C, Griffith BP, Wu ZJ (2012) Evaluation of Eulerian and Lagrangian models for hemolysis estimation. ASAIO J 58(4):363–372CrossRefPubMed
21.
Zurück zum Zitat Farinas MI, Garon A, Lacasse D, N’dri D (2006) Asymptotically consistent numerical approximation of hemolysis. J Biomech Eng 128:688–696CrossRefPubMed Farinas MI, Garon A, Lacasse D, N’dri D (2006) Asymptotically consistent numerical approximation of hemolysis. J Biomech Eng 128:688–696CrossRefPubMed
22.
Zurück zum Zitat Zhang J, Gellman B, Koert A, Dasse KA, Gilbert RJ, Griffith BP, Wu ZJ (2006) Computational and experimental evaluation of the fluid dynamics and hemocompatability of the centrimag blood pump. Artif Organs 30:168–177CrossRefPubMed Zhang J, Gellman B, Koert A, Dasse KA, Gilbert RJ, Griffith BP, Wu ZJ (2006) Computational and experimental evaluation of the fluid dynamics and hemocompatability of the centrimag blood pump. Artif Organs 30:168–177CrossRefPubMed
23.
Zurück zum Zitat Zhang T, Taskin ME, Fang HB, Pampori A, Jarvik R, Griffith BP, Wu ZJ (2011) Study of flow-induced hemolysis using novel Couette-type blood-shearing devices. Artif Organs 35(12):1180–1186CrossRefPubMed Zhang T, Taskin ME, Fang HB, Pampori A, Jarvik R, Griffith BP, Wu ZJ (2011) Study of flow-induced hemolysis using novel Couette-type blood-shearing devices. Artif Organs 35(12):1180–1186CrossRefPubMed
24.
Zurück zum Zitat Chen Z, Mondal NK, Ding J, Koenig SC, Slaughter MS, Wu ZJ (2016) Paradoxical effect of nonphysiological shear stress on platelets and von Willebrand factor. Artif Organs 40(7):659–668CrossRefPubMed Chen Z, Mondal NK, Ding J, Koenig SC, Slaughter MS, Wu ZJ (2016) Paradoxical effect of nonphysiological shear stress on platelets and von Willebrand factor. Artif Organs 40(7):659–668CrossRefPubMed
25.
Zurück zum Zitat Hasin T, Deo S, Maleszewski JJ, Topilsky Y, Edwards BS, Pereira NL, Stulak JM, Joyce L, Daly R, Kushwaha SS, Park SJ (2014) The role of medical management for acute intravascular hemolysis in patients supported on axial flow LVAD. ASAIO J 60(1):9–14CrossRefPubMed Hasin T, Deo S, Maleszewski JJ, Topilsky Y, Edwards BS, Pereira NL, Stulak JM, Joyce L, Daly R, Kushwaha SS, Park SJ (2014) The role of medical management for acute intravascular hemolysis in patients supported on axial flow LVAD. ASAIO J 60(1):9–14CrossRefPubMed
26.
Zurück zum Zitat Adamson RM, Dembitsky WP, Baradarian S, Chammas J, May-Newman K, Chillcott S, Stahovich M, McCalmont V, Ortiz K, Hoagland P, Jaski B (2011) Aortic valve closure associated with HeartMate left ventricular device support: technical considerations and long-term results. J Heart Lung Transplant 30(5):576–582CrossRefPubMed Adamson RM, Dembitsky WP, Baradarian S, Chammas J, May-Newman K, Chillcott S, Stahovich M, McCalmont V, Ortiz K, Hoagland P, Jaski B (2011) Aortic valve closure associated with HeartMate left ventricular device support: technical considerations and long-term results. J Heart Lung Transplant 30(5):576–582CrossRefPubMed
27.
Zurück zum Zitat Ambardekar AV, Hunter KS, Babu AN, Tuder RM, Dodson RB, Lindenfeld J (2015) Changes in aortic wall structure, composition, and stiffness with continuous-flow left ventricular assist devices: a pilot study. Circ Heart Fail 8:944–952CrossRefPubMed Ambardekar AV, Hunter KS, Babu AN, Tuder RM, Dodson RB, Lindenfeld J (2015) Changes in aortic wall structure, composition, and stiffness with continuous-flow left ventricular assist devices: a pilot study. Circ Heart Fail 8:944–952CrossRefPubMed
28.
Zurück zum Zitat Tolpen S, Janmaat J, Reider C, Kallel F, Farrar D, May-Newman K (2015) Programmed speed reduction enables aortic valve opening and increased pulsatility in the LVAD-assisted heart. ASAIO J 61(5):540–547CrossRefPubMed Tolpen S, Janmaat J, Reider C, Kallel F, Farrar D, May-Newman K (2015) Programmed speed reduction enables aortic valve opening and increased pulsatility in the LVAD-assisted heart. ASAIO J 61(5):540–547CrossRefPubMed
Metadaten
Titel
Shear stress and blood trauma under constant and pulse-modulated speed CF-VAD operations: CFD analysis of the HVAD
verfasst von
Zengsheng Chen
Sofen K. Jena
Guruprasad A. Giridharan
Michael A. Sobieski
Steven C. Koenig
Mark S. Slaughter
Bartley P. Griffith
Zhongjun J. Wu
Publikationsdatum
08.11.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 4/2019
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-018-1922-0