Skip to main content

2019 | OriginalPaper | Buchkapitel

Shock Waves Can Cure Biofilm Infections In Vivo in Combination with Antibiotics

verfasst von : Akshay Datey, Divyaprakash Gnanadhas, Dipshikha Chakravortty, Gopalan Jagadeesh

Erschienen in: 31st International Symposium on Shock Waves 2

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Shock waves are essentially non-linear waves that propagate at supersonic speeds. Any sudden release of energy will result in the formation of shock waves. In this study, we have shown for the first time that catheter, skin and lung biofilm infections can be treated using shock waves combined with antibiotics. Many bacteria secrete a highly hydrated framework of extracellular polymer matrix on encountering suitable substrates and embed within the matrix to form a biofilm. Bacterial biofilms are observed on many medical devices and on epithelial and endothelial surfaces during infection. For endocarditis, periodontitis and lung infections in cystic fibrosis patients, biofilms are an important mode of growth. Bacteria within the polymeric hydrogel matrix are protected from antibiotics, and antibiotic concentration of more than 1000 times of the MIC may be required to treat these infections. Here, we have demonstrated that shock waves can be used to remove Salmonella, Pseudomonas and Staphylococcus biofilms in urinary catheters. The studies were extended to a Pseudomonas chronic pneumonia lung infection model and Staphylococcus skin suture infection model in mice. The biofilm infections in mice, treated with shock waves, became susceptible to antibiotics, unlike untreated biofilms. Mice exposed to shock waves responded to ciprofloxacin treatment, while ciprofloxacin alone was ineffective in treating the infection. These results clearly demonstrate for the first time that shock waves, combined with antibiotic treatment, can be used to treat biofilm formation on medical devices as well as in situ infections.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Ludwig et al., High-energy shock wave treatment of femoral head necrosis in adults. Clin. Orthop. Relat. Res. 387, 119–126 (2001) J. Ludwig et al., High-energy shock wave treatment of femoral head necrosis in adults. Clin. Orthop. Relat. Res. 387, 119–126 (2001)
2.
Zurück zum Zitat Y.-R. Kuo, C.-T. Wang, F.-S. Wang, Y.-C. Chiang, C.-J. Wang, Extracorporeal shock-wave therapy enhanced wound healing via increasing topical blood perfusion and tissue regeneration in a rat model of STZ-induced diabetes. Wound Repair Regen. 17(4), 522–530 (2009) Y.-R. Kuo, C.-T. Wang, F.-S. Wang, Y.-C. Chiang, C.-J. Wang, Extracorporeal shock-wave therapy enhanced wound healing via increasing topical blood perfusion and tissue regeneration in a rat model of STZ-induced diabetes. Wound Repair Regen. 17(4), 522–530 (2009)
3.
Zurück zum Zitat C. Chaussy, E. Schmiedt, Extracorporeal shock wave lithotripsy (ESWL) for kidney stones. An alternative to surgery? Urol. Radiol. 6(1), 80–87 (1984) C. Chaussy, E. Schmiedt, Extracorporeal shock wave lithotripsy (ESWL) for kidney stones. An alternative to surgery? Urol. Radiol. 6(1), 80–87 (1984)
4.
Zurück zum Zitat S.G. Rakesh et al., Development of micro-shock wave assisted dry particle and fluid jet delivery system. Appl. Microbiol. Biotechnol. 96(3), 647–662 (2012) S.G. Rakesh et al., Development of micro-shock wave assisted dry particle and fluid jet delivery system. Appl. Microbiol. Biotechnol. 96(3), 647–662 (2012)
5.
Zurück zum Zitat G. Jagadeesh et al., Needleless vaccine delivery using micro-shock waves. Clin. Vaccine Immunol. 18(4), 539–545 (2011) G. Jagadeesh et al., Needleless vaccine delivery using micro-shock waves. Clin. Vaccine Immunol. 18(4), 539–545 (2011)
6.
Zurück zum Zitat G. Divya Prakash, R.V. Anish, G. Jagadeesh, D. Chakravortty, Bacterial transformation using micro-shock waves. Anal. Biochem. 419(2), 292–301 (2011) G. Divya Prakash, R.V. Anish, G. Jagadeesh, D. Chakravortty, Bacterial transformation using micro-shock waves. Anal. Biochem. 419(2), 292–301 (2011)
7.
Zurück zum Zitat Z.D. Taylor, et al., Bacterial biofilm disruption using laser generated shockwaves. Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pp. 1028–1032, 2010 Z.D. Taylor, et al., Bacterial biofilm disruption using laser generated shockwaves. Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pp. 1028–1032, 2010
8.
Zurück zum Zitat S. Wanner et al., Low-energy shock waves enhance the susceptibility of staphylococcal biofilms to antimicrobial agents in vitro. J. Bone Joint Surg. Br. Vol. 93-B(6), 824–827 (2011) S. Wanner et al., Low-energy shock waves enhance the susceptibility of staphylococcal biofilms to antimicrobial agents in vitro. J. Bone Joint Surg. Br. Vol. 93-B(6), 824–827 (2011)
9.
Zurück zum Zitat L. Hall-Stoodley, J.W. Costerton, P. Stoodley, Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2(2), 95–108 (2004) L. Hall-Stoodley, J.W. Costerton, P. Stoodley, Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2(2), 95–108 (2004)
10.
Zurück zum Zitat D. Lebeaux, J.M. Ghigo, C. Beloin, Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 78(3), 510–543 (2014) D. Lebeaux, J.M. Ghigo, C. Beloin, Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 78(3), 510–543 (2014)
11.
Zurück zum Zitat T. Coenye, H.J. Nelis, In vitro and in vivo model systems to study microbial biofilm formation. J. Microbiol. Methods 83(2), 89–105 (2010) T. Coenye, H.J. Nelis, In vitro and in vivo model systems to study microbial biofilm formation. J. Microbiol. Methods 83(2), 89–105 (2010)
12.
Zurück zum Zitat K. Vasilev, J. Cook, H.J. Griesser, Antibacterial surfaces for biomedical devices. Expert Rev. Med. Devices 6(5), 553–567 (2009) K. Vasilev, J. Cook, H.J. Griesser, Antibacterial surfaces for biomedical devices. Expert Rev. Med. Devices 6(5), 553–567 (2009)
13.
Zurück zum Zitat I. Francolini, G. Donelli, Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol. Med. Microbiol. 59(3), 227–238 (2010) I. Francolini, G. Donelli, Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol. Med. Microbiol. 59(3), 227–238 (2010)
14.
Zurück zum Zitat M. Lleo et al., Adhesion to medical device materials and biofilm formation capability of some species of enterococci in different physiological states. FEMS Microbiol. Lett. 274(2), 232–237 (2007) M. Lleo et al., Adhesion to medical device materials and biofilm formation capability of some species of enterococci in different physiological states. FEMS Microbiol. Lett. 274(2), 232–237 (2007)
15.
Zurück zum Zitat D. Mack et al., Biofilm formation in medical device-related infection. Int. J. Artif. Organs 29(4), 343–359 (2006)MathSciNet D. Mack et al., Biofilm formation in medical device-related infection. Int. J. Artif. Organs 29(4), 343–359 (2006)MathSciNet
16.
Zurück zum Zitat E.E. Braxton Jr. et al., Role of biofilms in neurosurgical device-related infections. Neurosurg. Rev. 28(4), 249–255 (2005) E.E. Braxton Jr. et al., Role of biofilms in neurosurgical device-related infections. Neurosurg. Rev. 28(4), 249–255 (2005)
17.
Zurück zum Zitat I.I. Raad et al., Prevention of central venous catheter-related infections by using maximal sterile barrier precautions during insertion. Infect. Control Hosp. Epidemiol. 15(4 Pt 1), 231–238 (1994) I.I. Raad et al., Prevention of central venous catheter-related infections by using maximal sterile barrier precautions during insertion. Infect. Control Hosp. Epidemiol. 15(4 Pt 1), 231–238 (1994)
18.
Zurück zum Zitat M.E. Olson, H. Ceri, D.W. Morck, Interaction of biofilms with tissues, in Medical Biofilms, (Wiley, New York, 2005), pp. 125–148 M.E. Olson, H. Ceri, D.W. Morck, Interaction of biofilms with tissues, in Medical Biofilms, (Wiley, New York, 2005), pp. 125–148
19.
Zurück zum Zitat J. Galli et al., Biofilm formation by Haemophilus influenzae isolated from adeno-tonsil tissue samples, and its role in recurrent adenotonsillitis. Acta Otorhinolaryngol. Ital. 27(3), 134–138 (2007) J. Galli et al., Biofilm formation by Haemophilus influenzae isolated from adeno-tonsil tissue samples, and its role in recurrent adenotonsillitis. Acta Otorhinolaryngol. Ital. 27(3), 134–138 (2007)
20.
Zurück zum Zitat R. Mladina, N. Skitarelic, S. Music, M. Ristic, A biofilm exists on healthy mucosa of the paranasal sinuses: A prospectively performed, blinded, scanning electron microscope study. Clin. Otolaryngol. 35(2), 104–110 (2010) R. Mladina, N. Skitarelic, S. Music, M. Ristic, A biofilm exists on healthy mucosa of the paranasal sinuses: A prospectively performed, blinded, scanning electron microscope study. Clin. Otolaryngol. 35(2), 104–110 (2010)
21.
Zurück zum Zitat I.O. Samuelraj, G. Jagadeesh, K. Kontis, Micro-blast waves using detonation transmission tubing. Shock Waves 23(4), 307–316 (2013) I.O. Samuelraj, G. Jagadeesh, K. Kontis, Micro-blast waves using detonation transmission tubing. Shock Waves 23(4), 307–316 (2013)
22.
Zurück zum Zitat M.S. Hariharan, S. Janardhanraj, S. Saravanan, G. Jagadeesh, Diaphragmless shock wave generators for industrial applications of shock waves. Shock Waves 21(3), 301–306 (2011) M.S. Hariharan, S. Janardhanraj, S. Saravanan, G. Jagadeesh, Diaphragmless shock wave generators for industrial applications of shock waves. Shock Waves 21(3), 301–306 (2011)
23.
Zurück zum Zitat O. Igra, J. Falcovitz, L. Houas, G. Jourdan, Review of methods to attenuate shock/blast waves. Prog. Aerosp. Sci. 58(0), 1–35 (2013) O. Igra, J. Falcovitz, L. Houas, G. Jourdan, Review of methods to attenuate shock/blast waves. Prog. Aerosp. Sci. 58(0), 1–35 (2013)
24.
Zurück zum Zitat K. Bhaskar, Studies on Shock Wave Attenuation in Liquids, MS Thesis, Indian Institute of Science, Bangalore, 2012 K. Bhaskar, Studies on Shock Wave Attenuation in Liquids, MS Thesis, Indian Institute of Science, Bangalore, 2012
25.
Zurück zum Zitat E. Wang, A. Shukla, Analytical and experimental evaluation of energies during shock wave loading. Int. J. Impact Eng. 37(12), 1188–1196 (2010) E. Wang, A. Shukla, Analytical and experimental evaluation of energies during shock wave loading. Int. J. Impact Eng. 37(12), 1188–1196 (2010)
26.
Zurück zum Zitat A. Heeckeren et al., Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa. J. Clin. Invest. 100(11), 2810–2815 (1997) A. Heeckeren et al., Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa. J. Clin. Invest. 100(11), 2810–2815 (1997)
27.
Zurück zum Zitat C.H. Chaussy, W. Brendel, E. Schmiedt, Extracorporeally induced destruction of kidney stones by shock waves. Lancet 316(8207), 1265–1268 (1980) C.H. Chaussy, W. Brendel, E. Schmiedt, Extracorporeally induced destruction of kidney stones by shock waves. Lancet 316(8207), 1265–1268 (1980)
28.
Zurück zum Zitat J.E. Lingeman, J.A. McAteer, E. Gnessin, A.P. Evan, Shock wave lithotripsy: Advances in technology and technique. Nat. Rev. Urol. 6(12), 660–670 (2009) J.E. Lingeman, J.A. McAteer, E. Gnessin, A.P. Evan, Shock wave lithotripsy: Advances in technology and technique. Nat. Rev. Urol. 6(12), 660–670 (2009)
29.
Zurück zum Zitat M. Delius, Medical applications and bioeffects of extracorporeal shock waves. Shock Waves 4(2), 55–72 (1994) M. Delius, Medical applications and bioeffects of extracorporeal shock waves. Shock Waves 4(2), 55–72 (1994)
30.
Zurück zum Zitat A.J. Coleman, T. Kodama, M.J. Choi, T. Adams, J.E. Saunders, The cavitation threshold of human tissue exposed to 0.2-MHz pulsed ultrasound: Preliminary measurements based on a study of clinical lithotripsy. Ultrasound Med. Biol. 21(3), 405–417 (1995) A.J. Coleman, T. Kodama, M.J. Choi, T. Adams, J.E. Saunders, The cavitation threshold of human tissue exposed to 0.2-MHz pulsed ultrasound: Preliminary measurements based on a study of clinical lithotripsy. Ultrasound Med. Biol. 21(3), 405–417 (1995)
31.
Zurück zum Zitat M. Eroglu, E. Cimentepe, F. Demirag, E. Unsal, A. Unsal, The effects of shock waves on lung tissue in acute period: An in vivo study. Urol. Res. 35(3), 155–160 (2007) M. Eroglu, E. Cimentepe, F. Demirag, E. Unsal, A. Unsal, The effects of shock waves on lung tissue in acute period: An in vivo study. Urol. Res. 35(3), 155–160 (2007)
32.
Zurück zum Zitat M. Delius et al., Biological effects of shock waves: Lung hemorrhage by shock waves in dogs—Pressure dependence. Ultrasound Med. Biol. 13(2), 61–67 (1987) M. Delius et al., Biological effects of shock waves: Lung hemorrhage by shock waves in dogs—Pressure dependence. Ultrasound Med. Biol. 13(2), 61–67 (1987)
33.
Zurück zum Zitat R.M. Donlan, J.W. Costerton, Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15(2), 167–193 (2002) R.M. Donlan, J.W. Costerton, Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15(2), 167–193 (2002)
34.
Zurück zum Zitat P. Stoodley, K. Sauer, D.G. Davies, J.W. Costerton, Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56(1), 187–209 (2002) P. Stoodley, K. Sauer, D.G. Davies, J.W. Costerton, Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56(1), 187–209 (2002)
35.
Zurück zum Zitat H. Elgharably et al., First evidence of sternal wound biofilm following cardiac surgery. PLoS One 8(8), e70360 (2013) H. Elgharably et al., First evidence of sternal wound biofilm following cardiac surgery. PLoS One 8(8), e70360 (2013)
36.
Zurück zum Zitat R.W. Crawford, D.L. Gibson, W.W. Kay, J.S. Gunn, Identification of a bile-induced exopolysaccharide required for Salmonella biofilm formation on gallstone surfaces. Infect. Immun. 76(11), 5341–5349 (2008) R.W. Crawford, D.L. Gibson, W.W. Kay, J.S. Gunn, Identification of a bile-induced exopolysaccharide required for Salmonella biofilm formation on gallstone surfaces. Infect. Immun. 76(11), 5341–5349 (2008)
37.
Zurück zum Zitat Y. Okajima, S. Kobayakawa, A. Tsuji, T. Tochikubo, Biofilm formation by Staphylococcus epidermidis on intraocular lens material. Invest. Ophthalmol. Vis. Sci. 47(7), 2971–2975 (2006) Y. Okajima, S. Kobayakawa, A. Tsuji, T. Tochikubo, Biofilm formation by Staphylococcus epidermidis on intraocular lens material. Invest. Ophthalmol. Vis. Sci. 47(7), 2971–2975 (2006)
38.
Zurück zum Zitat E. Ołdak, E.A. Trafny, Secretion of proteases by Pseudomonas aeruginosa biofilms exposed to ciprofloxacin. Antimicrob. Agents Chemother. 49(8), 3281–3288 (2005) E. Ołdak, E.A. Trafny, Secretion of proteases by Pseudomonas aeruginosa biofilms exposed to ciprofloxacin. Antimicrob. Agents Chemother. 49(8), 3281–3288 (2005)
Metadaten
Titel
Shock Waves Can Cure Biofilm Infections In Vivo in Combination with Antibiotics
verfasst von
Akshay Datey
Divyaprakash Gnanadhas
Dipshikha Chakravortty
Gopalan Jagadeesh
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-91017-8_57

    Premium Partner