Skip to main content
Erschienen in: Journal of Materials Science 12/2019

20.03.2019 | Materials for life sciences

Silica nanoparticles with dual visible–NIR luminescence affected by silica confinement of Tb(III) and Yb(III) complexes for cellular imaging application

verfasst von: Svetlana Fedorenko, Diana Gilmanova, Alsu Mukhametshina, Irek Nizameev, Kirill Kholin, Bulat Akhmadeev, Alexandra Voloshina, Anastasiya Sapunova, Svetlana Kuznetsova, Amina Daminova, Sergey Katsyuba, Rustem Zairov, Asiya Mustafina

Erschienen in: Journal of Materials Science | Ausgabe 12/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The work introduces silica confinement of Tb(III) and Yb(III) complexes with p-sulfonatothiacalix[4]arene (TCAS) arisen from their doping into silica nanoparticles (51–60 nm) as the reason for efficient dual green–NIR luminescence. pH-regulated water solubility of the lanthanide complexes is highlighted as prerequisite for the balance between efficient doping of the complexes into silica nanoparticles and their size/shape university. The impact of Tb(III) → Yb(III) energy transfer on the NIR and visible luminescence of the nanoparticles was revealed from photophysical studies of the nanoparticles doped with different couples of lanthanide complexes (Tb–Gd, Tb–Yb, Yb–Gd) at various molar ratios. The optimal balance between green and NIR luminescence is achieved for the silica nanoparticles doped with Tb–Yb complexes at 2:1 (Tb:Yb) ratio due to both Tb(III) → Yb(III) energy transfer and specific distribution of Tb(III) and Yb(III) complexes within silica nanoparticles. The dual luminescent nanoparticles exhibit efficient cellular uptake behavior after amino-decoration of their surface, which is confirmed by confocal microscopy images of the cells incubated by the heterometallic nanoparticles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Mao L, Liu Y, Yang S, Li Y, Zhang X, Wei Y (2019) Recent advances and progress of fluorescent bio-/chemosensors based on aggregation-induced emission molecules. Dyes Pigm 162:611–623CrossRef Mao L, Liu Y, Yang S, Li Y, Zhang X, Wei Y (2019) Recent advances and progress of fluorescent bio-/chemosensors based on aggregation-induced emission molecules. Dyes Pigm 162:611–623CrossRef
2.
Zurück zum Zitat Zhang X, Wang K, Liu M, Zhang X, Tao L, Chen Y, Wei Y (2015) Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives. Nanoscale 7:11486–11508CrossRef Zhang X, Wang K, Liu M, Zhang X, Tao L, Chen Y, Wei Y (2015) Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives. Nanoscale 7:11486–11508CrossRef
3.
Zurück zum Zitat Long Z, Mao L, Liu M, Wan Q, Wan Y, Zhang X, Wei Y (2017) Marrying multicomponent reactions and aggregation-induced emission (AIE): new directions for fluorescent nanoprobes. Polym Chem 8(37):5644–5654CrossRef Long Z, Mao L, Liu M, Wan Q, Wan Y, Zhang X, Wei Y (2017) Marrying multicomponent reactions and aggregation-induced emission (AIE): new directions for fluorescent nanoprobes. Polym Chem 8(37):5644–5654CrossRef
4.
Zurück zum Zitat Tian J, Jiang R, Gao P, Xu D, Mao L, Zeng G et al (2017) Synthesis and cell imaging applications of amphiphilic AIE-active poly(amino acid)s. Mater Sci Eng C Mater 79:563–569CrossRef Tian J, Jiang R, Gao P, Xu D, Mao L, Zeng G et al (2017) Synthesis and cell imaging applications of amphiphilic AIE-active poly(amino acid)s. Mater Sci Eng C Mater 79:563–569CrossRef
5.
Zurück zum Zitat Wan Q, Huang Q, Liu M, Xu D, Huang H, Zhang X, Wei Y (2017) Aggregation-induced emission active luminescent polymeric nanoparticles: non-covalent fabrication methodologies and biomedical applications. Appl Mater Today 9:145–160CrossRef Wan Q, Huang Q, Liu M, Xu D, Huang H, Zhang X, Wei Y (2017) Aggregation-induced emission active luminescent polymeric nanoparticles: non-covalent fabrication methodologies and biomedical applications. Appl Mater Today 9:145–160CrossRef
6.
Zurück zum Zitat Chen X, Zhou G, Peng X, Yoon J (2012) Biosensors and chemosensors based on the optical responses of polydiacetylenes. Chem Soc Rev 41(13):4610–4630CrossRef Chen X, Zhou G, Peng X, Yoon J (2012) Biosensors and chemosensors based on the optical responses of polydiacetylenes. Chem Soc Rev 41(13):4610–4630CrossRef
7.
Zurück zum Zitat Stochaj U, Rodríguez Burbano DC, Cooper DR, Kodiha M, Capobianco JA (2018) The effects of lanthanide-doped upconverting nanoparticles on cancer cell biomarkers. Nanoscale 10:14464–14471CrossRef Stochaj U, Rodríguez Burbano DC, Cooper DR, Kodiha M, Capobianco JA (2018) The effects of lanthanide-doped upconverting nanoparticles on cancer cell biomarkers. Nanoscale 10:14464–14471CrossRef
8.
Zurück zum Zitat Wang J, Shah ZH, Zhang S, Lu R (2014) Silica-based nanocomposites via reverse microemulsions: classifications, preparations, and applications. Nanoscale 6:4418–4437CrossRef Wang J, Shah ZH, Zhang S, Lu R (2014) Silica-based nanocomposites via reverse microemulsions: classifications, preparations, and applications. Nanoscale 6:4418–4437CrossRef
9.
Zurück zum Zitat Makhinson B, Duncan AK, Elam AR, De Bettencourt-Dias A, Medley CD, Smith JE, Werner EJ (2013) Turning on lanthanide luminescence via nanoencapsulation. Inorg Chem 52:6311–6318CrossRef Makhinson B, Duncan AK, Elam AR, De Bettencourt-Dias A, Medley CD, Smith JE, Werner EJ (2013) Turning on lanthanide luminescence via nanoencapsulation. Inorg Chem 52:6311–6318CrossRef
10.
Zurück zum Zitat Nakahara Y, Tatsumi Y, Akimoto I, Osaki S, Doi M, Kimura K (2015) Fluorescent silica nanoparticles modified chemically with terbium complexes as potential bioimaging probes: their fluorescence and colloidal properties in water. New J Chem 39:1452–1458CrossRef Nakahara Y, Tatsumi Y, Akimoto I, Osaki S, Doi M, Kimura K (2015) Fluorescent silica nanoparticles modified chemically with terbium complexes as potential bioimaging probes: their fluorescence and colloidal properties in water. New J Chem 39:1452–1458CrossRef
11.
Zurück zum Zitat Ibarra-Ruiz AM, Rodríguez Burbano DC, Capobianco JA (2016) Photoluminescent nanoplatforms in biomedical applications. Adv Phys X 1:194–225 Ibarra-Ruiz AM, Rodríguez Burbano DC, Capobianco JA (2016) Photoluminescent nanoplatforms in biomedical applications. Adv Phys X 1:194–225
12.
Zurück zum Zitat Dong N-N, Pedroni M, Piccinelli F, Conti G, Sbarbati A, Ramírez-Hernández JE, Maestro LM, Iglesias-De La Cruz MC, Sanz-Rodriguez F, Juarranz A, Chen F, Vetrone F, Capobianco JA, Solé JG, Bettinelli M, Jaque D, Speghini A (2011) NIR-to-NIR two-photon excited CaF2:Tm3 + , Yb3 + nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. ACS Nano 5:8665–8671CrossRef Dong N-N, Pedroni M, Piccinelli F, Conti G, Sbarbati A, Ramírez-Hernández JE, Maestro LM, Iglesias-De La Cruz MC, Sanz-Rodriguez F, Juarranz A, Chen F, Vetrone F, Capobianco JA, Solé JG, Bettinelli M, Jaque D, Speghini A (2011) NIR-to-NIR two-photon excited CaF2:Tm3 + , Yb3 + nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. ACS Nano 5:8665–8671CrossRef
13.
Zurück zum Zitat Wang X, Liu K, Yang G, Cheng L, He L, Liu Y, Li Y, Guo L, Liu Z (2014) Near-infrared light triggered photodynamic therapy in combination with gene therapy using upconversion nanoparticles for effective cancer cell killing. Nanoscale 6:9198–9205CrossRef Wang X, Liu K, Yang G, Cheng L, He L, Liu Y, Li Y, Guo L, Liu Z (2014) Near-infrared light triggered photodynamic therapy in combination with gene therapy using upconversion nanoparticles for effective cancer cell killing. Nanoscale 6:9198–9205CrossRef
14.
Zurück zum Zitat Yang G, Lv R, He F, Qu F, Gai S, Du S, Wei Z, Yang P (2015) A core/shell/satellite anticancer platform for 808 NIR light-driven multimodal imaging and combined chemo-/photothermal therapy. Nanoscale 7:13747–13758CrossRef Yang G, Lv R, He F, Qu F, Gai S, Du S, Wei Z, Yang P (2015) A core/shell/satellite anticancer platform for 808 NIR light-driven multimodal imaging and combined chemo-/photothermal therapy. Nanoscale 7:13747–13758CrossRef
15.
Zurück zum Zitat Sun S-K, Wang H-F, Yan X-P (2018) Engineering persistent luminescence nanoparticles for biological applications: from biosensing/bioimaging to theranostics. Acc Chem Res 51:1131–1143CrossRef Sun S-K, Wang H-F, Yan X-P (2018) Engineering persistent luminescence nanoparticles for biological applications: from biosensing/bioimaging to theranostics. Acc Chem Res 51:1131–1143CrossRef
16.
Zurück zum Zitat Du B, Cao X, Zhao F, Su X, Wang Y, Yan X, Jia S, Zhou J, Yao H (2016) Multimodal imaging-guided, dual-targeted photothermal therapy for cancer. J Mater Chem B 4:2038–2050CrossRef Du B, Cao X, Zhao F, Su X, Wang Y, Yan X, Jia S, Zhou J, Yao H (2016) Multimodal imaging-guided, dual-targeted photothermal therapy for cancer. J Mater Chem B 4:2038–2050CrossRef
17.
Zurück zum Zitat Li P, Yan Y, Chen B, Zhang P, Wang S, Zhou J, Fan H, Wang Y, Huang X (2018) Lanthanide-doped upconversion nanoparticles complexed with nano-oxide graphene used for upconversion fluorescence imaging and photothermal therapy. Biomater Sci 6:877–884CrossRef Li P, Yan Y, Chen B, Zhang P, Wang S, Zhou J, Fan H, Wang Y, Huang X (2018) Lanthanide-doped upconversion nanoparticles complexed with nano-oxide graphene used for upconversion fluorescence imaging and photothermal therapy. Biomater Sci 6:877–884CrossRef
18.
Zurück zum Zitat Bünzli J-CG (2015) On the design of highly luminescent lanthanide complexes. Coord Chem Rev 293–294:19–47CrossRef Bünzli J-CG (2015) On the design of highly luminescent lanthanide complexes. Coord Chem Rev 293–294:19–47CrossRef
19.
Zurück zum Zitat Bünzli J-CG (2016) Lanthanide light for biology and medical diagnosis. J Lumin 170:866–878CrossRef Bünzli J-CG (2016) Lanthanide light for biology and medical diagnosis. J Lumin 170:866–878CrossRef
20.
Zurück zum Zitat He F, Feng L, Yang P, Liu B, Gai S, Yang G, Dai Y, Lin J (2016) Enhanced up/down-conversion luminescence and heat: simultaneously achieving in one single core–shell structure for multimodal imaging guided therapy. Biomaterials 105:77–88CrossRef He F, Feng L, Yang P, Liu B, Gai S, Yang G, Dai Y, Lin J (2016) Enhanced up/down-conversion luminescence and heat: simultaneously achieving in one single core–shell structure for multimodal imaging guided therapy. Biomaterials 105:77–88CrossRef
21.
Zurück zum Zitat Mukhametshina AR, Mustafina AR, Davydov NA, Fedorenko SV, Nizameev IR, Kadirov MK, Gorbatchuk VV, Konovalov AI (2015) Tb(III)-doped silica nanoparticles for sensing: effect of interfacial interactions on substrate-induced luminescent response. Langmuir 31:611–619CrossRef Mukhametshina AR, Mustafina AR, Davydov NA, Fedorenko SV, Nizameev IR, Kadirov MK, Gorbatchuk VV, Konovalov AI (2015) Tb(III)-doped silica nanoparticles for sensing: effect of interfacial interactions on substrate-induced luminescent response. Langmuir 31:611–619CrossRef
22.
Zurück zum Zitat Fedorenko SV, Mustafina AR, Mukhametshina AR, Jilkin ME, Mukhametzyanov TA, Solovieva AO, Pozmogova TN, Shestopalova LV, Shestopalov MA, Kholin KV, Osin YN, Sinyashin OG (2017) Cellular imaging by green luminescence of Tb(III)-doped aminomodified silica nanoparticles. Mater Sci Eng, C 76:551–558CrossRef Fedorenko SV, Mustafina AR, Mukhametshina AR, Jilkin ME, Mukhametzyanov TA, Solovieva AO, Pozmogova TN, Shestopalova LV, Shestopalov MA, Kholin KV, Osin YN, Sinyashin OG (2017) Cellular imaging by green luminescence of Tb(III)-doped aminomodified silica nanoparticles. Mater Sci Eng, C 76:551–558CrossRef
23.
Zurück zum Zitat Mukhametshina AR, Fedorenko SV, Zueva IV, Petrov KA, Masson P, Nizameev IR, Mustafina AR, Sinyashin OG (2016) Luminescent silica nanoparticles for sensing acetylcholinesterase-catalyzed hydrolysis of acetylcholine. Biosens Bioelectron 77:871–878CrossRef Mukhametshina AR, Fedorenko SV, Zueva IV, Petrov KA, Masson P, Nizameev IR, Mustafina AR, Sinyashin OG (2016) Luminescent silica nanoparticles for sensing acetylcholinesterase-catalyzed hydrolysis of acetylcholine. Biosens Bioelectron 77:871–878CrossRef
24.
Zurück zum Zitat Mukhametshina AR, Fedorenko SV, Petrov AM, Zakyrjanova GF, Petrov KA, Nurullin LF, Nizameev IR, Mustafina AR, Sinyashin OG (2018) Targeted nanoparticles for selective marking of neuromuscular junctions and ex vivo monitoring of endogenous acetylcholine hydrolysis. ACS Appl Mater Interfaces 10:14948–14955CrossRef Mukhametshina AR, Fedorenko SV, Petrov AM, Zakyrjanova GF, Petrov KA, Nurullin LF, Nizameev IR, Mustafina AR, Sinyashin OG (2018) Targeted nanoparticles for selective marking of neuromuscular junctions and ex vivo monitoring of endogenous acetylcholine hydrolysis. ACS Appl Mater Interfaces 10:14948–14955CrossRef
25.
Zurück zum Zitat Mukhametshina A, Petrov A, Fedorenko S, Petrov K, Nizameev I, Mustafina A, Sinyashin O (2018) Luminescent nanoparticles for rapid monitoring of endogenous acetylcholine release in mice atria. Luminescence 33:588–593CrossRef Mukhametshina A, Petrov A, Fedorenko S, Petrov K, Nizameev I, Mustafina A, Sinyashin O (2018) Luminescent nanoparticles for rapid monitoring of endogenous acetylcholine release in mice atria. Luminescence 33:588–593CrossRef
26.
Zurück zum Zitat Comby S, Surender EM, Kotova O, Truman LK, Molloy JK, Gunnlaugsson T (2014) Lanthanide-functionalized nanoparticles as MRI and luminescent probes for sensing and/or imaging applications. Inorg Chem 53:1867–1879CrossRef Comby S, Surender EM, Kotova O, Truman LK, Molloy JK, Gunnlaugsson T (2014) Lanthanide-functionalized nanoparticles as MRI and luminescent probes for sensing and/or imaging applications. Inorg Chem 53:1867–1879CrossRef
27.
Zurück zum Zitat Liu Q, Zou X, Shi Y, Shen B, Cao C, Cheng S, Feng W, Li F (2018) An efficient dye-sensitized NIR emissive lanthanide nanomaterial and its application in fluorescence-guided peritumoral lymph node dissection. Nanoscale 10:12573–12581CrossRef Liu Q, Zou X, Shi Y, Shen B, Cao C, Cheng S, Feng W, Li F (2018) An efficient dye-sensitized NIR emissive lanthanide nanomaterial and its application in fluorescence-guided peritumoral lymph node dissection. Nanoscale 10:12573–12581CrossRef
28.
Zurück zum Zitat Zatsepin A, Kuznetsova Y (2018) Down-conversion of UV radiation in erbium-doped gadolinium oxide nanoparticles. Appl Mater Today 12:34–42CrossRef Zatsepin A, Kuznetsova Y (2018) Down-conversion of UV radiation in erbium-doped gadolinium oxide nanoparticles. Appl Mater Today 12:34–42CrossRef
29.
Zurück zum Zitat Chen D-M, Sun C-X, Peng Y, Zhang N-N, Si H-H, Liu C-S, Du M (2018) Ratiometric fluorescence sensing and colorimetric decoding methanol by a bimetallic lanthanide-organic framework. Sens Actuators, B 265:104–109CrossRef Chen D-M, Sun C-X, Peng Y, Zhang N-N, Si H-H, Liu C-S, Du M (2018) Ratiometric fluorescence sensing and colorimetric decoding methanol by a bimetallic lanthanide-organic framework. Sens Actuators, B 265:104–109CrossRef
30.
Zurück zum Zitat Mustafina AR, Fedorenko SV, Konovalova OD, Menshikova AY, Shevchenko NN, Soloveva SE, Konovalov AI, Antipin IS (2009) Novel highly charged silica-coated Tb(III) nanoparticles with fluorescent properties sensitive to ion exchange and energy transfer processes in aqueous dispersions. Langmuir 25(5):3146–3151. https://doi.org/10.1021/la8032572 CrossRef Mustafina AR, Fedorenko SV, Konovalova OD, Menshikova AY, Shevchenko NN, Soloveva SE, Konovalov AI, Antipin IS (2009) Novel highly charged silica-coated Tb(III) nanoparticles with fluorescent properties sensitive to ion exchange and energy transfer processes in aqueous dispersions. Langmuir 25(5):3146–3151. https://​doi.​org/​10.​1021/​la8032572 CrossRef
31.
Zurück zum Zitat Fedorenko SV, Bochkova OD, Mustafina AR, Burilov VA, Kadirov MK, Holin CV, Nizameev IR, Skripacheva VV, Menshikova AY, Antipin IS, Konovalov AI (2010) Dual visible and near-infrared luminescent silica nanoparticles. Synthesis and aggregation stability. J Phys Chem C 114:6350–6355CrossRef Fedorenko SV, Bochkova OD, Mustafina AR, Burilov VA, Kadirov MK, Holin CV, Nizameev IR, Skripacheva VV, Menshikova AY, Antipin IS, Konovalov AI (2010) Dual visible and near-infrared luminescent silica nanoparticles. Synthesis and aggregation stability. J Phys Chem C 114:6350–6355CrossRef
32.
Zurück zum Zitat Iki N, Fujimoto T, Miyano S (1998) A new water-soluble host molecule derived from thiacalixarene. Chem Lett 27:625–626CrossRef Iki N, Fujimoto T, Miyano S (1998) A new water-soluble host molecule derived from thiacalixarene. Chem Lett 27:625–626CrossRef
33.
Zurück zum Zitat Davydov N, Mustafina A, Burilov V, Zvereva E, Katsyuba S, Vagapova L, Konovalov A, Antipin I (2012) Complex formation of d-metal ions at the interface of TbIII-doped silica nanoparticles as a basis of substrate-responsive TbIII-centered luminescence. ChemPhysChem 13:3357–3364CrossRef Davydov N, Mustafina A, Burilov V, Zvereva E, Katsyuba S, Vagapova L, Konovalov A, Antipin I (2012) Complex formation of d-metal ions at the interface of TbIII-doped silica nanoparticles as a basis of substrate-responsive TbIII-centered luminescence. ChemPhysChem 13:3357–3364CrossRef
34.
Zurück zum Zitat Chen Y, Zhang Y (2011) Fluorescent quantification of amino groups on silica nanoparticle surfaces. Anal Bioanal Chem 399:2503–2509CrossRef Chen Y, Zhang Y (2011) Fluorescent quantification of amino groups on silica nanoparticle surfaces. Anal Bioanal Chem 399:2503–2509CrossRef
35.
Zurück zum Zitat Voloshina AD, Semenov VE, Strobykina AS, Kulik NV, Krylova ES, Zobov VV, Reznik VS (2017) Synthesis and antimicrobial and toxic properties of novel 1,3-bis(alkyl)-6-methyluracil derivatives containing 1,2,3- and 1,2,4-triazolium fragments. Russ J Bioorg Chem 43(2):170–176CrossRef Voloshina AD, Semenov VE, Strobykina AS, Kulik NV, Krylova ES, Zobov VV, Reznik VS (2017) Synthesis and antimicrobial and toxic properties of novel 1,3-bis(alkyl)-6-methyluracil derivatives containing 1,2,3- and 1,2,4-triazolium fragments. Russ J Bioorg Chem 43(2):170–176CrossRef
36.
Zurück zum Zitat Arriagada FJ, Osseo-Asare K (1999) Controlled hydrolysis of tetraethoxysilane in a nonionic water-in-oil microemulsion: a statistical model of silica nucleation. Colloids Surf A 154(3):311–326CrossRef Arriagada FJ, Osseo-Asare K (1999) Controlled hydrolysis of tetraethoxysilane in a nonionic water-in-oil microemulsion: a statistical model of silica nucleation. Colloids Surf A 154(3):311–326CrossRef
37.
Zurück zum Zitat Bagwe RP, Yang C, Hilliard LR, Tan W (2004) Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 20(19):8336–8342CrossRef Bagwe RP, Yang C, Hilliard LR, Tan W (2004) Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 20(19):8336–8342CrossRef
38.
Zurück zum Zitat Fedorenko SV, Grechkina SL, Mustafina AR, Kholin KV, Stepanov AS, Nizameev IR, Ismaev IE, Kadirov MK, Zairov RR, Fattakhova AN, Amirov RR, Soloveva SE (2017) Tuning the non-covalent confinement of Gd(III) complexes in silica nanoparticles for high T1-weighted MR imaging capability. Colloids Surf B 149:243–249CrossRef Fedorenko SV, Grechkina SL, Mustafina AR, Kholin KV, Stepanov AS, Nizameev IR, Ismaev IE, Kadirov MK, Zairov RR, Fattakhova AN, Amirov RR, Soloveva SE (2017) Tuning the non-covalent confinement of Gd(III) complexes in silica nanoparticles for high T1-weighted MR imaging capability. Colloids Surf B 149:243–249CrossRef
39.
Zurück zum Zitat Karashimada R, Iki N (2016) Thiacalixarene assembled heterotrinuclear lanthanide clusters comprising TbIII and YbIII enable f–f communication to enhance YbIII-centred luminescence. Chem Commun 52:3139–3142CrossRef Karashimada R, Iki N (2016) Thiacalixarene assembled heterotrinuclear lanthanide clusters comprising TbIII and YbIII enable f–f communication to enhance YbIII-centred luminescence. Chem Commun 52:3139–3142CrossRef
40.
Zurück zum Zitat Iki N, Hiro-oka S, Nakamura M, Tanaka T, Hoshino H (2012) Kinetically stable LnIII complexes comprising a trinuclear core sandwiched between two thiacalix[4]arene ligands self-assembled in water (LnIII = NdIII, YbIII). Eur J Inorg Chem 2012:3541–3545CrossRef Iki N, Hiro-oka S, Nakamura M, Tanaka T, Hoshino H (2012) Kinetically stable LnIII complexes comprising a trinuclear core sandwiched between two thiacalix[4]arene ligands self-assembled in water (LnIII = NdIII, YbIII). Eur J Inorg Chem 2012:3541–3545CrossRef
41.
Zurück zum Zitat Amirov R, McMillan Z, Mustafina A, Chukurova I, Solovieva S, Antipin I, Konovalov A (2005) A first report on ternary complex formation between p-sulfonatothiacalix[4]arene, tetramethylammonium ion and gadolinium (III) ion in aqueous solutions. Inorg Chem Commun 8(9):821–824CrossRef Amirov R, McMillan Z, Mustafina A, Chukurova I, Solovieva S, Antipin I, Konovalov A (2005) A first report on ternary complex formation between p-sulfonatothiacalix[4]arene, tetramethylammonium ion and gadolinium (III) ion in aqueous solutions. Inorg Chem Commun 8(9):821–824CrossRef
42.
Zurück zum Zitat Bonacchi S, Genovese D, Juris R, Marzocchi E, Montalti M, Prodi L, Rampazzo E, Zaccheroni N (2008) In: Geddes CD (ed) Reviews in fluorescence. Springer, Baltimore, pp 119–137 Bonacchi S, Genovese D, Juris R, Marzocchi E, Montalti M, Prodi L, Rampazzo E, Zaccheroni N (2008) In: Geddes CD (ed) Reviews in fluorescence. Springer, Baltimore, pp 119–137
43.
Zurück zum Zitat Zhang Y, Lv J, Ding N, Jiang S, Zheng T, Li J (2015) Tunable luminescence and energy transfer from Gd3+ to Tb3+ ions in silicate oxyfluoride scintillating glasses via varying Tb3+ concentration. J Non-Cryst Solids 423–424:30–34CrossRef Zhang Y, Lv J, Ding N, Jiang S, Zheng T, Li J (2015) Tunable luminescence and energy transfer from Gd3+ to Tb3+ ions in silicate oxyfluoride scintillating glasses via varying Tb3+ concentration. J Non-Cryst Solids 423–424:30–34CrossRef
45.
Zurück zum Zitat Larson DR, Ow H, Vishwasrao HD, Heikal AA, Wiesner U, Webb WW (2008) Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores. Chem Mater 20:2677–2684CrossRef Larson DR, Ow H, Vishwasrao HD, Heikal AA, Wiesner U, Webb WW (2008) Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores. Chem Mater 20:2677–2684CrossRef
46.
Zurück zum Zitat Iki N, Ohta M, Tanaka T, Horiuchi T, Hoshino H (2009) A supramolecular sensing system for AgI at nanomolar levels by the formation of a luminescent AgI–TbIII–thiacalix[4]arene ternary complex. New J Chem 33(1):23–25CrossRef Iki N, Ohta M, Tanaka T, Horiuchi T, Hoshino H (2009) A supramolecular sensing system for AgI at nanomolar levels by the formation of a luminescent AgI–TbIII–thiacalix[4]arene ternary complex. New J Chem 33(1):23–25CrossRef
47.
Zurück zum Zitat Saha K, Kim ST, Yan B, Miranda OR, Alfonso FS, Shlosman D, Rotello VM (2013) Surface functionality of nanoparticles determines cellular uptake mechanisms in mammalian cells. Small 9:300–305CrossRef Saha K, Kim ST, Yan B, Miranda OR, Alfonso FS, Shlosman D, Rotello VM (2013) Surface functionality of nanoparticles determines cellular uptake mechanisms in mammalian cells. Small 9:300–305CrossRef
48.
Zurück zum Zitat Shahabi S, Treccani L, Dringen R, Rezwan K (2015) Modulation of silica nanoparticle uptake into human osteoblast cells by variation of the ratio of amino and sulfonate surface groups: effects of serum. ACS Appl Mater Interfaces 7:13821–13833CrossRef Shahabi S, Treccani L, Dringen R, Rezwan K (2015) Modulation of silica nanoparticle uptake into human osteoblast cells by variation of the ratio of amino and sulfonate surface groups: effects of serum. ACS Appl Mater Interfaces 7:13821–13833CrossRef
50.
Zurück zum Zitat Zhu J, Liao L, Zhu L, Zhang P, Guo K, Kong J, Ji C, Liu B (2013) Size-dependent cellular uptake efficiency, mechanism, and cytotoxicity of silica nanoparticles toward HeLa cells. Talanta 107:408–415CrossRef Zhu J, Liao L, Zhu L, Zhang P, Guo K, Kong J, Ji C, Liu B (2013) Size-dependent cellular uptake efficiency, mechanism, and cytotoxicity of silica nanoparticles toward HeLa cells. Talanta 107:408–415CrossRef
51.
Zurück zum Zitat Colthup NB, Daly LH, Wiberley SE (1964) Introduction to infrared and Raman spectroscopy. Academic Press, New York, p 278 Colthup NB, Daly LH, Wiberley SE (1964) Introduction to infrared and Raman spectroscopy. Academic Press, New York, p 278
52.
Zurück zum Zitat Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRef Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRef
53.
Zurück zum Zitat Kipen HM, Laskin DL (2005) Smaller is not always better: nanotechnology yields nanotoxicology. Am J Physiol Lung Cell Mol Physiol 289:L696–L697CrossRef Kipen HM, Laskin DL (2005) Smaller is not always better: nanotechnology yields nanotoxicology. Am J Physiol Lung Cell Mol Physiol 289:L696–L697CrossRef
Metadaten
Titel
Silica nanoparticles with dual visible–NIR luminescence affected by silica confinement of Tb(III) and Yb(III) complexes for cellular imaging application
verfasst von
Svetlana Fedorenko
Diana Gilmanova
Alsu Mukhametshina
Irek Nizameev
Kirill Kholin
Bulat Akhmadeev
Alexandra Voloshina
Anastasiya Sapunova
Svetlana Kuznetsova
Amina Daminova
Sergey Katsyuba
Rustem Zairov
Asiya Mustafina
Publikationsdatum
20.03.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 12/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03532-6

Weitere Artikel der Ausgabe 12/2019

Journal of Materials Science 12/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.