Skip to main content

2017 | OriginalPaper | Buchkapitel

7. Silicon-Based Junctionless MOSFETs: Device Physics, Performance Boosters and Variations

verfasst von : Xinnan Lin, Haijun Lou, Ying Xiao, Wenbo Wan, Lining Zhang, Mansun Chan

Erschienen in: Outlook and Challenges of Nano Devices, Sensors, and MEMS

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we provide a review on the junctionless transistors which are promising nanoscale devices in terms of controlled doping fluctuations. We introduce a physics-based analytical model to describe the transistors’ characteristics in all the operation regions through which their device physics are clearly illustrated. Based on that, several performance boosters with geometry engineering are described to enhance the performance of junctionless transistors. Nonetheless, junctionless transistors are still subject to certain variations even with limited doping fluctuations. We discuss about the cross section and line edge roughness as two main variation sources and also explain one possible solution using the charge plasma concept to further suppress the variations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.-P. Colinge, C.-W. Lee, A. Afzalian, et al., Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)CrossRef J.-P. Colinge, C.-W. Lee, A. Afzalian, et al., Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)CrossRef
2.
Zurück zum Zitat C.-W. Lee, I. Ferain, A. Afzalian, et al., Performance estimation of junctionless multigate transistors. Solid-State Electron. 54(2), 97–103 (2010)CrossRef C.-W. Lee, I. Ferain, A. Afzalian, et al., Performance estimation of junctionless multigate transistors. Solid-State Electron. 54(2), 97–103 (2010)CrossRef
3.
Zurück zum Zitat J.P. Colinge, C.W. Lee, I. Ferain, et al., Reduced electric field in junctionless transistors. Appl. Phys. Lett. 96(7), 073510 (2010)CrossRef J.P. Colinge, C.W. Lee, I. Ferain, et al., Reduced electric field in junctionless transistors. Appl. Phys. Lett. 96(7), 073510 (2010)CrossRef
4.
Zurück zum Zitat R. Rios, A. Cappellani, M. Armstrong, et al., Comparison of junctionless and conventional trigate transistors with down to 26 nm. IEEE Electron Device Lett. 32(9), 1170–1172 (2011)CrossRef R. Rios, A. Cappellani, M. Armstrong, et al., Comparison of junctionless and conventional trigate transistors with down to 26 nm. IEEE Electron Device Lett. 32(9), 1170–1172 (2011)CrossRef
5.
Zurück zum Zitat H. Lou, L. Zhang, Y. Zhu, X. Lin, S. Yang, J. He, M. Chan, A junctionless nanowire transistor with dual-material-gate. IEEE Trans. Electron Devices 59(7), 1829–1836 (2011) H. Lou, L. Zhang, Y. Zhu, X. Lin, S. Yang, J. He, M. Chan, A junctionless nanowire transistor with dual-material-gate. IEEE Trans. Electron Devices 59(7), 1829–1836 (2011)
6.
Zurück zum Zitat H. Lou, B. Zhang, D. Li, X. Lin, J. He, M. Chan, Suppression of subthreshold characteristics variation for junctionless multigate transistors using high-k spacers. Semicond. Sci. Technol. 30, 015008 (2015)CrossRef H. Lou, B. Zhang, D. Li, X. Lin, J. He, M. Chan, Suppression of subthreshold characteristics variation for junctionless multigate transistors using high-k spacers. Semicond. Sci. Technol. 30, 015008 (2015)CrossRef
8.
Zurück zum Zitat C.H. Park, M.D. Ko, K.H. Kim, R.H. Baek, C.W. Sohn, C.K. Baek, S. Park, M. Deen, Y.H. Jeong, J.S. Lee, Electrical characteristics of 20-nm junctionless Si nanowire transistors. Solid-State Electron. 73(6), 7–10 (2012)CrossRef C.H. Park, M.D. Ko, K.H. Kim, R.H. Baek, C.W. Sohn, C.K. Baek, S. Park, M. Deen, Y.H. Jeong, J.S. Lee, Electrical characteristics of 20-nm junctionless Si nanowire transistors. Solid-State Electron. 73(6), 7–10 (2012)CrossRef
9.
Zurück zum Zitat C.H. Park, M.D. Ko, K.H. Kim, S.H. Lee, J.S. Yoon, J.S. Lee, Y.H. Jeong, Investigation of low-frequency noise behavior after hot-carrier stress in an n-channel junctionless nanowire MOSFET. IEEE Electron. Device Lett. 33(11), 1538–1540 (2012)CrossRef C.H. Park, M.D. Ko, K.H. Kim, S.H. Lee, J.S. Yoon, J.S. Lee, Y.H. Jeong, Investigation of low-frequency noise behavior after hot-carrier stress in an n-channel junctionless nanowire MOSFET. IEEE Electron. Device Lett. 33(11), 1538–1540 (2012)CrossRef
10.
Zurück zum Zitat S. Barraud, M. Berthome, R. Coquand, M. Casse, T. Ernst, M.-P. Samson, P. Perreau, K. Bourdelle, O. Faynot, T. Poiroux, Scaling of trigate junctionless nanowire MOSFET with gate length down to 13 nm. IEEE Electron. Device Lett. 15(6), 22–27 (2000) S. Barraud, M. Berthome, R. Coquand, M. Casse, T. Ernst, M.-P. Samson, P. Perreau, K. Bourdelle, O. Faynot, T. Poiroux, Scaling of trigate junctionless nanowire MOSFET with gate length down to 13 nm. IEEE Electron. Device Lett. 15(6), 22–27 (2000)
11.
Zurück zum Zitat S. Migita, Y. Morita, M. Masahara, H. Ota, Electrical performances of junctionless-FETs at the scaling limit (LCH=3 nm). in IEEE International Electron Devices Meeting (IEDM), 2012, pp. 861–864 S. Migita, Y. Morita, M. Masahara, H. Ota, Electrical performances of junctionless-FETs at the scaling limit (LCH=3 nm). in IEEE International Electron Devices Meeting (IEDM), 2012, pp. 861–864
12.
Zurück zum Zitat D.D. Zhao, T. Nishimura, C.-H. Lee, R. Ifuku, K. Nagashio, K. Kita, A. Toriumi, Junctionless Ge MOSFETs fabricated on 10 nm-thick GeOI substrate. ECS Trans. 35(3), 457–464 (2011)CrossRef D.D. Zhao, T. Nishimura, C.-H. Lee, R. Ifuku, K. Nagashio, K. Kita, A. Toriumi, Junctionless Ge MOSFETs fabricated on 10 nm-thick GeOI substrate. ECS Trans. 35(3), 457–464 (2011)CrossRef
13.
Zurück zum Zitat R. Yu, I. Ferain, N.D. Akhavan, P. Razavi, R. Duffy, J.P. Colinge, Characterization of a junctionless diode. Appl. Phys. Lett. 99(99), 013502–013502-3 (2011)CrossRef R. Yu, I. Ferain, N.D. Akhavan, P. Razavi, R. Duffy, J.P. Colinge, Characterization of a junctionless diode. Appl. Phys. Lett. 99(99), 013502–013502-3 (2011)CrossRef
14.
Zurück zum Zitat Z. Ding, G. Hu, R. Liu, L. Wang, S. Hu, X. Zhou, Analytical models for the electric potential, threshold voltage and drain current of long-channel junctionless double-gate transistors. J. Korean Phys. Soc. 62(8), 1188–1193 (2013)CrossRef Z. Ding, G. Hu, R. Liu, L. Wang, S. Hu, X. Zhou, Analytical models for the electric potential, threshold voltage and drain current of long-channel junctionless double-gate transistors. J. Korean Phys. Soc. 62(8), 1188–1193 (2013)CrossRef
15.
Zurück zum Zitat X. Jin, X. Liu, M. Wu, R. Chuai, J.-H. Lee, J.-H. Lee, A unified analytical continuous current model applicable to accumulation mode (junctionless) and inversion mode MOSFETs with symmetric and asymmetric double-gatestructures. Solid-State Electron. 79, 206–209 (2013)CrossRef X. Jin, X. Liu, M. Wu, R. Chuai, J.-H. Lee, J.-H. Lee, A unified analytical continuous current model applicable to accumulation mode (junctionless) and inversion mode MOSFETs with symmetric and asymmetric double-gatestructures. Solid-State Electron. 79, 206–209 (2013)CrossRef
16.
Zurück zum Zitat Z. Chen, Y. Xiao, M. Tang, Y. Xiong, J. Huang, J. Li, X. Gu, Y. Zhou, Surface-potential-based drain current model for long-channel junctionless double-gate MOSFETs. IEEE Trans. Electron. Devices 59(12), 3292–3298 (2012)CrossRef Z. Chen, Y. Xiao, M. Tang, Y. Xiong, J. Huang, J. Li, X. Gu, Y. Zhou, Surface-potential-based drain current model for long-channel junctionless double-gate MOSFETs. IEEE Trans. Electron. Devices 59(12), 3292–3298 (2012)CrossRef
17.
Zurück zum Zitat X. Lin, B. Zhang, Y. Xiao, H. Lou, L. Zhang, M. Chan, Analytical current model for long-channel junctionless double-gate MOSFETs. IEEE Trans. Electron. Devices 63(3), 959–965 (2016)CrossRef X. Lin, B. Zhang, Y. Xiao, H. Lou, L. Zhang, M. Chan, Analytical current model for long-channel junctionless double-gate MOSFETs. IEEE Trans. Electron. Devices 63(3), 959–965 (2016)CrossRef
18.
Zurück zum Zitat Y. Xiao, B. Zhang, H. Lou, L. Zhang, X. Lin, A compact model of subthreshold current with source/drain depletion effect for short channel junctionless sylindrical surrounding-gate MOSFETs. IEEE Trans. Electron. Devices 63, 2176–2181 (2016)CrossRef Y. Xiao, B. Zhang, H. Lou, L. Zhang, X. Lin, A compact model of subthreshold current with source/drain depletion effect for short channel junctionless sylindrical surrounding-gate MOSFETs. IEEE Trans. Electron. Devices 63, 2176–2181 (2016)CrossRef
19.
Zurück zum Zitat F. Liu, J. He, J. Zhang, Y. Chen, M. Chan, A non-charge-sheet analytic model for symmetric double-gate MOSFETs with smooth transition between partially and fully depleted operation modes. IEEE Trans. Electron. Devices 55(12), 3494–3502 (2008)CrossRef F. Liu, J. He, J. Zhang, Y. Chen, M. Chan, A non-charge-sheet analytic model for symmetric double-gate MOSFETs with smooth transition between partially and fully depleted operation modes. IEEE Trans. Electron. Devices 55(12), 3494–3502 (2008)CrossRef
20.
Zurück zum Zitat A. Ben-Israel, A Newton–Raphson method for the solution of systems of equations. J. Math. Anal. Appl. 15(2), 243–252 (1966)MathSciNetCrossRefMATH A. Ben-Israel, A Newton–Raphson method for the solution of systems of equations. J. Math. Anal. Appl. 15(2), 243–252 (1966)MathSciNetCrossRefMATH
21.
Zurück zum Zitat TCAD, Sentaurus Device Users Manual (Synopsys, Mountain View, CA, 2013) TCAD, Sentaurus Device Users Manual (Synopsys, Mountain View, CA, 2013)
22.
Zurück zum Zitat H.C. Pao, C.T. Sah, Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors. Solid-State Electron. 9(10), 927–937 (1966)CrossRef H.C. Pao, C.T. Sah, Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors. Solid-State Electron. 9(10), 927–937 (1966)CrossRef
23.
Zurück zum Zitat R.F. Pierret, J.A. Shields, Simplified long-channel MOSFET theory. Solid-State Electron. 26(2), 143–147 (1983)CrossRef R.F. Pierret, J.A. Shields, Simplified long-channel MOSFET theory. Solid-State Electron. 26(2), 143–147 (1983)CrossRef
24.
Zurück zum Zitat A. Ortiz-Conde, R. Herrera, P.E. Schmidt, F.J.G. Sánchez, J. Andrian, Long-channel silicon-on-insulator MOSFET theory. Solid-State Electron. 35(9), 1291–1298 (1992)CrossRef A. Ortiz-Conde, R. Herrera, P.E. Schmidt, F.J.G. Sánchez, J. Andrian, Long-channel silicon-on-insulator MOSFET theory. Solid-State Electron. 35(9), 1291–1298 (1992)CrossRef
26.
Zurück zum Zitat A. Gnudi, S. Reggiani, E. Gnani, G. Baccarani, Semianalytical model of the subthreshold current in short-channel junctionless symmetric double-gate field-effect transistors. IEEE Trans. Electron. Devices 60(4), 1342–1348 (2013)CrossRef A. Gnudi, S. Reggiani, E. Gnani, G. Baccarani, Semianalytical model of the subthreshold current in short-channel junctionless symmetric double-gate field-effect transistors. IEEE Trans. Electron. Devices 60(4), 1342–1348 (2013)CrossRef
27.
Zurück zum Zitat J.-P. Colinge et al., Reduced electric field in junctionless transistors. Appl. Phys. Lett. 96(7), 073510 (2010)CrossRef J.-P. Colinge et al., Reduced electric field in junctionless transistors. Appl. Phys. Lett. 96(7), 073510 (2010)CrossRef
28.
Zurück zum Zitat R.T. Doria et al., Junctionless multiple-gate transistors for analog applications. IEEE Trans.Electron. Devices 58(8), 2511–2519 (2011)CrossRef R.T. Doria et al., Junctionless multiple-gate transistors for analog applications. IEEE Trans.Electron. Devices 58(8), 2511–2519 (2011)CrossRef
29.
Zurück zum Zitat T. Holtij, M. Schwarz, A. Kloes, B. Iñíguez, 2D analytical potential modeling of junctionless DG MOSFETs in subthreshold region including proposal for calculating the threshold voltage. in Proc. of the IEEE13th Int. Conf. Ultimate Integr. Silicon, 2012, pp. 81–84. T. Holtij, M. Schwarz, A. Kloes, B. Iñíguez, 2D analytical potential modeling of junctionless DG MOSFETs in subthreshold region including proposal for calculating the threshold voltage. in Proc. of the IEEE13th Int. Conf. Ultimate Integr. Silicon, 2012, pp. 81–84.
30.
Zurück zum Zitat S. Cho, K. Kim, B. Park, I. Kang, RF performance and small-signal parameter extraction of junctionless silicon nanowire MOSFETs. IEEE Trans. Electron Devices 58(5), 1388–1396 (2011)CrossRef S. Cho, K. Kim, B. Park, I. Kang, RF performance and small-signal parameter extraction of junctionless silicon nanowire MOSFETs. IEEE Trans. Electron Devices 58(5), 1388–1396 (2011)CrossRef
31.
Zurück zum Zitat M. Maglietta, E. Zanazzi, F. Jona, D. Jepsen, P. Marcus, LEED structure analysis of a Co{001} surface. Appl. Phys. A Mater. Sci. Process. 15(4), 409–412 (1978) M. Maglietta, E. Zanazzi, F. Jona, D. Jepsen, P. Marcus, LEED structure analysis of a Co{001} surface. Appl. Phys. A Mater. Sci. Process. 15(4), 409–412 (1978)
32.
Zurück zum Zitat R. Lander, J. Hooker, J. Van -Zijl, F. Roozeboom, M. Maas, Y. Tamminga, R. Wolters, A tunable metal gate work function using solid state diffusion of nitrogen. in Proc. of the ESSDERC, 2002, pp. 103–106 R. Lander, J. Hooker, J. Van -Zijl, F. Roozeboom, M. Maas, Y. Tamminga, R. Wolters, A tunable metal gate work function using solid state diffusion of nitrogen. in Proc. of the ESSDERC, 2002, pp. 103–106
33.
Zurück zum Zitat C. Wu, B. Hung, A. Chin, S. Wang, F. Yen, Y. Hou, Y. Jin, H. Tao, S. Chen, M. Liang, HfSiON n-MOSFETs using low-work function HfSix gate. IEEE Electron. Device Lett. 27(9), 762–764 (2006)CrossRef C. Wu, B. Hung, A. Chin, S. Wang, F. Yen, Y. Hou, Y. Jin, H. Tao, S. Chen, M. Liang, HfSiON n-MOSFETs using low-work function HfSix gate. IEEE Electron. Device Lett. 27(9), 762–764 (2006)CrossRef
34.
Zurück zum Zitat A. Borisov, D. Teillet-Billy, J. Gauyacq, H. Winter, G. Dierkes, Resonant charge transfer in grazing scattering of alkali-metal ions from an Al (111) surface. Phys. Rev. B 54(23), 17166–17174 (1996)CrossRef A. Borisov, D. Teillet-Billy, J. Gauyacq, H. Winter, G. Dierkes, Resonant charge transfer in grazing scattering of alkali-metal ions from an Al (111) surface. Phys. Rev. B 54(23), 17166–17174 (1996)CrossRef
35.
Zurück zum Zitat W. Song, M. Yoshitake, A work function study of ultra-thin alumina formation on NiAl (1 1 0) surface. Appl. Surf. Sci. 251(1–4), 14–18 (2005)CrossRef W. Song, M. Yoshitake, A work function study of ultra-thin alumina formation on NiAl (1 1 0) surface. Appl. Surf. Sci. 251(1–4), 14–18 (2005)CrossRef
36.
Zurück zum Zitat A. Chaudhry, M. Kumar, Investigation of the novel attributes of a fully depleted dual-material gate SOI MOSFET. IEEE Trans. Electron. Devices 51(9), 1463–1467 (2004)CrossRef A. Chaudhry, M. Kumar, Investigation of the novel attributes of a fully depleted dual-material gate SOI MOSFET. IEEE Trans. Electron. Devices 51(9), 1463–1467 (2004)CrossRef
37.
Zurück zum Zitat Y. Li, K. Lee, C. Yiu, Y. Chiu, R. Chang, Dual-material gate approach to suppression of random-dopant-induced characteristic fluctuation in 16 nm metal-oxide-semiconductor field effect-transistor devices. Jpn. J. Appl. Phys. 50(4), 04DC07-1–04DC07-7 (2011) Y. Li, K. Lee, C. Yiu, Y. Chiu, R. Chang, Dual-material gate approach to suppression of random-dopant-induced characteristic fluctuation in 16 nm metal-oxide-semiconductor field effect-transistor devices. Jpn. J. Appl. Phys. 50(4), 04DC07-1–04DC07-7 (2011)
38.
Zurück zum Zitat G. Leung, C. Chui, Variability of inversion-mode and junctionless FinFETs due to line edge roughness. IEEE Electron. Device Lett. 32(11), 1489–1491 (2011)CrossRef G. Leung, C. Chui, Variability of inversion-mode and junctionless FinFETs due to line edge roughness. IEEE Electron. Device Lett. 32(11), 1489–1491 (2011)CrossRef
39.
Zurück zum Zitat S. Potbhare, Modeling and Characterization of 4H–SIC MOSFETs: HighField, High Temperature, and Transient Effects (Univ. Maryland, College Park, MD, 2008) S. Potbhare, Modeling and Characterization of 4H–SIC MOSFETs: HighField, High Temperature, and Transient Effects (Univ. Maryland, College Park, MD, 2008)
40.
Zurück zum Zitat C. Chen, J. Lin, M. Chiang, K. Kim, High-performance ultra-low power junctionless nanowire FET on SOI substrate in subthreshold logic application. in Proc. IEEE Int. SOI Conf., 2010, pp. 1–2 C. Chen, J. Lin, M. Chiang, K. Kim, High-performance ultra-low power junctionless nanowire FET on SOI substrate in subthreshold logic application. in Proc. IEEE Int. SOI Conf., 2010, pp. 1–2
41.
Zurück zum Zitat Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd edn. (Oxford Univ. Press, New York, 1999) Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd edn. (Oxford Univ. Press, New York, 1999)
42.
Zurück zum Zitat K. Bhuwalka, J. Schulze, I. Eisele, Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering. IEEE Trans. Electron. Devices 52(5), 909–917 (2005)CrossRef K. Bhuwalka, J. Schulze, I. Eisele, Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering. IEEE Trans. Electron. Devices 52(5), 909–917 (2005)CrossRef
43.
Zurück zum Zitat M. Saxena, S. Haldar, M. Gupta, R. Gupta, Design considerations for novel device architecture: Hetero-material double-gate (HEM-DG) MOSFET with sub-100 nm gate length. Solid State Electron. 48(7), 1169–1174 (2004)CrossRef M. Saxena, S. Haldar, M. Gupta, R. Gupta, Design considerations for novel device architecture: Hetero-material double-gate (HEM-DG) MOSFET with sub-100 nm gate length. Solid State Electron. 48(7), 1169–1174 (2004)CrossRef
44.
Zurück zum Zitat A. Khakifirooz, D. Antoniadis, MOSFET performance scaling—Part II: future directions. IEEE Trans. Electron. Devices 55(6), 1401–1408 (2008)CrossRef A. Khakifirooz, D. Antoniadis, MOSFET performance scaling—Part II: future directions. IEEE Trans. Electron. Devices 55(6), 1401–1408 (2008)CrossRef
45.
Zurück zum Zitat X. Wu, P. Chan, M. Chan, Impacts of nonrectangular FIN cross section on the electrical characteristics of FinFET. IEEE Trans. Electron. Devices 52(1), 63–68 (2005)CrossRef X. Wu, P. Chan, M. Chan, Impacts of nonrectangular FIN cross section on the electrical characteristics of FinFET. IEEE Trans. Electron. Devices 52(1), 63–68 (2005)CrossRef
47.
Zurück zum Zitat S.-J. Choi, D.-I. Moon, S. Kim, J.P. Duarte, Y.-K. Choi, Sensitivity of threshold voltage to nanowire width variation in junctionless transistors. IEEE Electron. Device Lett. 32, 125–127 (2011)CrossRef S.-J. Choi, D.-I. Moon, S. Kim, J.P. Duarte, Y.-K. Choi, Sensitivity of threshold voltage to nanowire width variation in junctionless transistors. IEEE Electron. Device Lett. 32, 125–127 (2011)CrossRef
48.
Zurück zum Zitat C.-H. Park, M.-D. Ko, K.-H. Kim, R.-H. Baek, C.-W. Sohn, C.K. Baek, S. Park, M. Deen, Y.-H. Jeong, J.-S. Lee, Electrical characteristics of 20-nm junctionless Si nanowire transistors. Solid-State Electron. 73, 7–10 (2012)CrossRef C.-H. Park, M.-D. Ko, K.-H. Kim, R.-H. Baek, C.-W. Sohn, C.K. Baek, S. Park, M. Deen, Y.-H. Jeong, J.-S. Lee, Electrical characteristics of 20-nm junctionless Si nanowire transistors. Solid-State Electron. 73, 7–10 (2012)CrossRef
49.
Zurück zum Zitat J.-P. Colinge, C.-W. Lee, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, A. Kranti, R. Yu, Junctionless Transistors: Physics and Properties Semiconductor-On-Insulator Materials for Nanoelectronics Applications (Springer, Berlin, 2011), pp. 187–200CrossRef J.-P. Colinge, C.-W. Lee, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, A. Kranti, R. Yu, Junctionless Transistors: Physics and Properties Semiconductor-On-Insulator Materials for Nanoelectronics Applications (Springer, Berlin, 2011), pp. 187–200CrossRef
50.
Zurück zum Zitat J.-P. Colinge, FinFETs and Other Multi-Gate Transistors (Springer, New York, 2007) J.-P. Colinge, FinFETs and Other Multi-Gate Transistors (Springer, New York, 2007)
51.
Zurück zum Zitat W. Wu, M. Chan, Analysis of geometry-dependent parasitics in multifin double-gate FinFETs. IEEE Trans. Electron. Devices 54, 692–698 (2007)CrossRef W. Wu, M. Chan, Analysis of geometry-dependent parasitics in multifin double-gate FinFETs. IEEE Trans. Electron. Devices 54, 692–698 (2007)CrossRef
52.
Zurück zum Zitat C.J. Huang, S.C. Lee, Stress effects on self-aligned silicon nanowires junctionless field effect transistors. in 11th IEEE International Conference on Nanotechnology, 2011 C.J. Huang, S.C. Lee, Stress effects on self-aligned silicon nanowires junctionless field effect transistors. in 11th IEEE International Conference on Nanotechnology, 2011
53.
54.
55.
Zurück zum Zitat Y. Liu, K. Ishii, M. Masahara, T. Tsutsumi, H. Takashima, H. Yamauchi, E. Suzuki, Jpn. J. Appl. Phys. 43, 2151 (2004)CrossRef Y. Liu, K. Ishii, M. Masahara, T. Tsutsumi, H. Takashima, H. Yamauchi, E. Suzuki, Jpn. J. Appl. Phys. 43, 2151 (2004)CrossRef
56.
57.
Zurück zum Zitat M. Kushibiki, A. Hara, E. Nishimura, T. Endoh, Jpn. J. Appl. Phys. 50, 04DA16 (2011)CrossRef M. Kushibiki, A. Hara, E. Nishimura, T. Endoh, Jpn. J. Appl. Phys. 50, 04DA16 (2011)CrossRef
58.
Zurück zum Zitat A. Asenov, S. Kaya, A.R. Brown, Intrinsic parameter fluctuations in decananometer MOSFETs induced by gate line edge roughness. IEEE Trans. Electron. Devices 50(5), 1254–1260 (2003)CrossRef A. Asenov, S. Kaya, A.R. Brown, Intrinsic parameter fluctuations in decananometer MOSFETs induced by gate line edge roughness. IEEE Trans. Electron. Devices 50(5), 1254–1260 (2003)CrossRef
59.
Zurück zum Zitat Y. Liu, K. Ishii, T. Tsutsumi, M. Masahara, E. Suzuki, IEEE Electron. Device Lett. 24, 484 (2003)CrossRef Y. Liu, K. Ishii, T. Tsutsumi, M. Masahara, E. Suzuki, IEEE Electron. Device Lett. 24, 484 (2003)CrossRef
60.
Zurück zum Zitat H. Lou, D. Li, Y. Dong, X. Lin, S. Yang, J. He, M. Chan, Jpn. J. Appl. Phys. 52, 104302 (2013)CrossRef H. Lou, D. Li, Y. Dong, X. Lin, S. Yang, J. He, M. Chan, Jpn. J. Appl. Phys. 52, 104302 (2013)CrossRef
61.
Zurück zum Zitat S. Choi, D. Moon, S. Kim, J. Duarte, Y. Choi, IEEE Electron. Device Lett. 32, 125 (2011)CrossRef S. Choi, D. Moon, S. Kim, J. Duarte, Y. Choi, IEEE Electron. Device Lett. 32, 125 (2011)CrossRef
62.
Zurück zum Zitat R. Rios, A. Cappellani, M. Armstrong, A. Budrevich, H. Gomez, R. Pai, N. Rahhal-Orabi, K. Kuhn, IEEE Electron. Device Lett. 32, 1170 (2011)CrossRef R. Rios, A. Cappellani, M. Armstrong, A. Budrevich, H. Gomez, R. Pai, N. Rahhal-Orabi, K. Kuhn, IEEE Electron. Device Lett. 32, 1170 (2011)CrossRef
63.
Zurück zum Zitat J.P. Colinge, C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neil, A. Blake, M. White, Nanowire transistor without junctions. Nat. Nanotechnol. 5, 225–229 (2010)CrossRef J.P. Colinge, C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neil, A. Blake, M. White, Nanowire transistor without junctions. Nat. Nanotechnol. 5, 225–229 (2010)CrossRef
64.
Zurück zum Zitat Ying Xiao, Baili Zhang, Haijun Lou, Xiaole Cui, Xinnan Lin, 2015, IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) Ying Xiao, Baili Zhang, Haijun Lou, Xiaole Cui, Xinnan Lin, 2015, IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC)
65.
Zurück zum Zitat G. Leung, C.O. Chui, Variability impact of random dopant fluctuation on nanoscale junctionless FinFETs. IEEE Electron. Device Lett. 33(6), 767–769 (2012)CrossRef G. Leung, C.O. Chui, Variability impact of random dopant fluctuation on nanoscale junctionless FinFETs. IEEE Electron. Device Lett. 33(6), 767–769 (2012)CrossRef
66.
Zurück zum Zitat A. Gnudi, S. Reggiani, E. Gnani, et al., Analysis of threshold voltage variability due to random dopant fluctuations in junctionless FETs. IEEE Electron. Device Lett. 33(3), 336–338 (2012)CrossRef A. Gnudi, S. Reggiani, E. Gnani, et al., Analysis of threshold voltage variability due to random dopant fluctuations in junctionless FETs. IEEE Electron. Device Lett. 33(3), 336–338 (2012)CrossRef
67.
Zurück zum Zitat M.J.M. Pelgrom, A.C.J. Duinmaijer, A.P.G. Welbers, Matching properties of MOS transistors. IEEE J. Solid-State Circuits 24(5), 1433–1439 (1989)CrossRef M.J.M. Pelgrom, A.C.J. Duinmaijer, A.P.G. Welbers, Matching properties of MOS transistors. IEEE J. Solid-State Circuits 24(5), 1433–1439 (1989)CrossRef
68.
Zurück zum Zitat M. Aldegunde, A. Martinez, J.R. Barker, Study of discrete dopinginduced variability in junctionless nanowire MOSFETs using dissipative quantum transport simulations. IEEE Electron. Device Lett. 33(2), 194–196 (2012)CrossRef M. Aldegunde, A. Martinez, J.R. Barker, Study of discrete dopinginduced variability in junctionless nanowire MOSFETs using dissipative quantum transport simulations. IEEE Electron. Device Lett. 33(2), 194–196 (2012)CrossRef
69.
Zurück zum Zitat R. Trevisoli, R. Doria, M. de Souza, M. Pavanello, Threshold voltage in junctionless nanowire transistors. Semicond. Sci. Technol. 26(10), 105009 (2011)CrossRef R. Trevisoli, R. Doria, M. de Souza, M. Pavanello, Threshold voltage in junctionless nanowire transistors. Semicond. Sci. Technol. 26(10), 105009 (2011)CrossRef
70.
Zurück zum Zitat Wenbo Wan, Haijun Lou, Ying Xiao, Xinnan Lin, 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) Wenbo Wan, Haijun Lou, Ying Xiao, Xinnan Lin, 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC)
71.
Zurück zum Zitat B. Rajasekharan, R.J.E. Hueting, C. Salm, T.V. Hemert, R.A.M. Wolters, J. Schmitz, Fabrication and characterization of the charge-plasma diode. IEEE Electron Device Lett. 31(6), 528–530 (2010)CrossRef B. Rajasekharan, R.J.E. Hueting, C. Salm, T.V. Hemert, R.A.M. Wolters, J. Schmitz, Fabrication and characterization of the charge-plasma diode. IEEE Electron Device Lett. 31(6), 528–530 (2010)CrossRef
72.
Zurück zum Zitat R.J.E. Hueting, B. Rajasekharan, C. Salm, J. Schmitz, The charge plasma P-N diode. IEEE Electron. Device Lett. 29(12), 1367–1368 (2008)CrossRef R.J.E. Hueting, B. Rajasekharan, C. Salm, J. Schmitz, The charge plasma P-N diode. IEEE Electron. Device Lett. 29(12), 1367–1368 (2008)CrossRef
73.
Zurück zum Zitat M.J. Kumar, K. Nadda, Bipolar charge-plasma transistor: a novel three terminal device. IEEE Trans. Electron. Devices 59(4), 962–967 (2012)CrossRef M.J. Kumar, K. Nadda, Bipolar charge-plasma transistor: a novel three terminal device. IEEE Trans. Electron. Devices 59(4), 962–967 (2012)CrossRef
74.
Zurück zum Zitat U. Schwalke, T. Kraussa, F. Wesselya, Dopant-free CMOS on SOI:multi-gate Si-nanowire transistors for logic and memory applications. ECS Trans. 53(5), 105–114 (2013)CrossRef U. Schwalke, T. Kraussa, F. Wesselya, Dopant-free CMOS on SOI:multi-gate Si-nanowire transistors for logic and memory applications. ECS Trans. 53(5), 105–114 (2013)CrossRef
75.
Zurück zum Zitat C. Sahu, J. Singh, Charge-plasma based process variation immune junctionless transistor. IEEE Electron. Device Lett. 35(3), 411–413 (2014)CrossRef C. Sahu, J. Singh, Charge-plasma based process variation immune junctionless transistor. IEEE Electron. Device Lett. 35(3), 411–413 (2014)CrossRef
Metadaten
Titel
Silicon-Based Junctionless MOSFETs: Device Physics, Performance Boosters and Variations
verfasst von
Xinnan Lin
Haijun Lou
Ying Xiao
Wenbo Wan
Lining Zhang
Mansun Chan
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-50824-5_7

Neuer Inhalt