Skip to main content
Erschienen in: Journal of Materials Science 3/2019

15.10.2018 | Electronic materials

Silicon microstructures through the production of silicon nanowires by metal-assisted chemical etching, used as sacrificial material

verfasst von: O. Pérez-Díaz, E. Quiroga-González, N. R. Silva-González

Erschienen in: Journal of Materials Science | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A simple, inexpensive and wafer-scale method to obtain Si microstructures is proposed. The method consists in a sequence of steps that include a selective metal-assisted chemical etching process to create regions of Si nanowires that are sacrificed in a post-etching process, leaving microstructures standing. As a proof of concept, Si micropillars with length of 7 µm and diameter of 1.4 µm were fabricated. The advantage of the proposed method is its simplicity, allowing the production of microstructures in a basic chemical laboratory.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Howe RT (1988) Surface micromachining for microsensors and microactuators. J Vac Sci Technol B 6:1809–1813CrossRef Howe RT (1988) Surface micromachining for microsensors and microactuators. J Vac Sci Technol B 6:1809–1813CrossRef
2.
Zurück zum Zitat Higurashi E, Ukita H, Tanaka H, Ohguchi O (1994) Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining. Appl Phys Lett 64:62209–62210CrossRef Higurashi E, Ukita H, Tanaka H, Ohguchi O (1994) Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining. Appl Phys Lett 64:62209–62210CrossRef
3.
Zurück zum Zitat Sze S (2008) Lithography and etching. In: Sze S (ed) Semiconductor devices: physics and technology. Wiley, New York, pp 404–451 Sze S (2008) Lithography and etching. In: Sze S (ed) Semiconductor devices: physics and technology. Wiley, New York, pp 404–451
4.
Zurück zum Zitat Mahalik N (2008) Micromanufacturing and nanotechnology. Springer, Berlin Mahalik N (2008) Micromanufacturing and nanotechnology. Springer, Berlin
5.
Zurück zum Zitat Johnstone R, Parmaswaran A (2004) An introduction to surface-micromachining. Springer, New YorkCrossRef Johnstone R, Parmaswaran A (2004) An introduction to surface-micromachining. Springer, New YorkCrossRef
6.
Zurück zum Zitat Kusdterer J, Kohn E (2009) CVD diamond MEMS. In: Sussmann R (ed) CVD diamond for electronic devices and sensors. Wiley, London, pp 469–548 Kusdterer J, Kohn E (2009) CVD diamond MEMS. In: Sussmann R (ed) CVD diamond for electronic devices and sensors. Wiley, London, pp 469–548
7.
Zurück zum Zitat Wolffenbuttel RF (1996) Development of compatible micromachining processes in silicon. In: Wolffenbuttel RF (ed) Silicon sensors and circuits: on-chip compatibility. Springer, London, pp 55–114 Wolffenbuttel RF (1996) Development of compatible micromachining processes in silicon. In: Wolffenbuttel RF (ed) Silicon sensors and circuits: on-chip compatibility. Springer, London, pp 55–114
8.
Zurück zum Zitat Ataka M, Omodaka A, Fujita H (1993) A biomimetic micro motion system-a ciliary motion system. In: Proceeding of the international conference on transducers, Yocohama Ataka M, Omodaka A, Fujita H (1993) A biomimetic micro motion system-a ciliary motion system. In: Proceeding of the international conference on transducers, Yocohama
9.
Zurück zum Zitat Shimaoka K, Tabata O, Kimura K, Sugiyama S (1993) Micro diaphragm pressure sensor using polysilicon sacrificial layer etch-stop technique. In: Proceeding of the international conference on transducers, Yokohama Shimaoka K, Tabata O, Kimura K, Sugiyama S (1993) Micro diaphragm pressure sensor using polysilicon sacrificial layer etch-stop technique. In: Proceeding of the international conference on transducers, Yokohama
10.
Zurück zum Zitat Jiang H, Yoo K, Yeh J, Li Z, Tien N (2001) Fabrication of thick silicon dioxide sacrificial and isolation blocks in a silicon substrate. J Micromech Microeng 12:87–95CrossRef Jiang H, Yoo K, Yeh J, Li Z, Tien N (2001) Fabrication of thick silicon dioxide sacrificial and isolation blocks in a silicon substrate. J Micromech Microeng 12:87–95CrossRef
11.
Zurück zum Zitat Lerner B, Perez M, Toro C, Lasorsa C, Rinaldi CA, Boselli A, Lamagna A (2012) Generation of cavities in silicon wafers by laser ablation using silicon nitride as sacrificial layer. Appl Surf Sci 258:2914–2919CrossRef Lerner B, Perez M, Toro C, Lasorsa C, Rinaldi CA, Boselli A, Lamagna A (2012) Generation of cavities in silicon wafers by laser ablation using silicon nitride as sacrificial layer. Appl Surf Sci 258:2914–2919CrossRef
12.
Zurück zum Zitat Yong D, Gwen L, Peng C, Litian L, Zhijian L (2002) Preparation and etching of porous silicon as a sacrificial layer used in RF-MEMSs devices. In: Proceedings of the international conference on solid-state and integrated-circuit technology, Shanghai Yong D, Gwen L, Peng C, Litian L, Zhijian L (2002) Preparation and etching of porous silicon as a sacrificial layer used in RF-MEMSs devices. In: Proceedings of the international conference on solid-state and integrated-circuit technology, Shanghai
13.
Zurück zum Zitat Hedrich F, Billat S, Lang S (2000) Structuring of membrane sensors using sacrificial porous silicon. Sensors Actuators 84:315–323CrossRef Hedrich F, Billat S, Lang S (2000) Structuring of membrane sensors using sacrificial porous silicon. Sensors Actuators 84:315–323CrossRef
14.
Zurück zum Zitat Amri C, Ouertani R, Hamdia A, Ezzaouia H (2018) Enhancement of electrical parameters in solar grade monocrystalline silicon by external gettering through sacrificial silicon nanowire layer. Mater Res Bull 98:41–46CrossRef Amri C, Ouertani R, Hamdia A, Ezzaouia H (2018) Enhancement of electrical parameters in solar grade monocrystalline silicon by external gettering through sacrificial silicon nanowire layer. Mater Res Bull 98:41–46CrossRef
15.
Zurück zum Zitat Convertino A, Cuscuna M, Martelli F (2012) Silicon nanotubes from sacrificial silicon nanowires: fabrication and manipulation via embedding in flexible polymers. Nanotechnology 23:305602CrossRef Convertino A, Cuscuna M, Martelli F (2012) Silicon nanotubes from sacrificial silicon nanowires: fabrication and manipulation via embedding in flexible polymers. Nanotechnology 23:305602CrossRef
16.
Zurück zum Zitat Lee KN, Lee K, Jung S, Lee M, Seong W (2012) Fabrication of metal nanobridge arrays using sacrificial silicon nanowire. J Electr Eng Technol 7:396–400CrossRef Lee KN, Lee K, Jung S, Lee M, Seong W (2012) Fabrication of metal nanobridge arrays using sacrificial silicon nanowire. J Electr Eng Technol 7:396–400CrossRef
17.
Zurück zum Zitat Li X, Bohn P (2000) Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77:2572CrossRef Li X, Bohn P (2000) Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77:2572CrossRef
19.
Zurück zum Zitat Kim S, Khang D (2014) Bulk micromachining of Si by metal-assisted chemical etching. Small 10:3761–3766CrossRef Kim S, Khang D (2014) Bulk micromachining of Si by metal-assisted chemical etching. Small 10:3761–3766CrossRef
20.
Zurück zum Zitat Hildreth O, Lin W, Wong C (2009) Effect of catalyst shape and etchant composition on etching direction in metal-assisted chemical etching of silicon to fabricate 3D nanostructures. ACS Nano 3:4033–4042CrossRef Hildreth O, Lin W, Wong C (2009) Effect of catalyst shape and etchant composition on etching direction in metal-assisted chemical etching of silicon to fabricate 3D nanostructures. ACS Nano 3:4033–4042CrossRef
21.
Zurück zum Zitat Bell T, Gennissen P, DeMunter D, Kuhl M (1996) Porous silicon as a sacrificial material. J Micromech Microeng 6:361–369CrossRef Bell T, Gennissen P, DeMunter D, Kuhl M (1996) Porous silicon as a sacrificial material. J Micromech Microeng 6:361–369CrossRef
22.
Zurück zum Zitat Weisse J, Lee C, Kim D, Cai L, Rao P, Zheng X (2013) Electro-assisted transfer of vertical silicon wire arrays using a sacrificial porous silicon layer. Nano Lett 13:4362–4368CrossRef Weisse J, Lee C, Kim D, Cai L, Rao P, Zheng X (2013) Electro-assisted transfer of vertical silicon wire arrays using a sacrificial porous silicon layer. Nano Lett 13:4362–4368CrossRef
23.
Zurück zum Zitat Fang H, Wu Y, Zhu J (2006) Silver catalysis in the fabrication of silicon nanowire arrays. Nanotechnology 17:3768–3774CrossRef Fang H, Wu Y, Zhu J (2006) Silver catalysis in the fabrication of silicon nanowire arrays. Nanotechnology 17:3768–3774CrossRef
24.
Zurück zum Zitat Huang Z, Fang H, Zhu J (2007) Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv Mater 19:744–748CrossRef Huang Z, Fang H, Zhu J (2007) Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv Mater 19:744–748CrossRef
25.
Zurück zum Zitat Huang Z, Shimizu T, Senz S, Zhang Z, Zhang X, Lee W, Geyer N, Gösele U (2009) Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions. Nano Lett 9:2519–2525CrossRef Huang Z, Shimizu T, Senz S, Zhang Z, Zhang X, Lee W, Geyer N, Gösele U (2009) Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions. Nano Lett 9:2519–2525CrossRef
26.
Zurück zum Zitat Chang S-W, Chuang V, Boles S, Ross C, Thompson C (2009) Densely packed arrays of ultra-high-aspect-ratio silicon nanowires fabricated using block-copolymer lithography and metal-assisted etching. Adv Funct Mater 19:2495–2500CrossRef Chang S-W, Chuang V, Boles S, Ross C, Thompson C (2009) Densely packed arrays of ultra-high-aspect-ratio silicon nanowires fabricated using block-copolymer lithography and metal-assisted etching. Adv Funct Mater 19:2495–2500CrossRef
27.
Zurück zum Zitat Peng K, Hu J, Yan Y, Wu Y, Fang H, Xu Y, Lee S, Zhu J (2006) Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv Funct Mater 16:387–394CrossRef Peng K, Hu J, Yan Y, Wu Y, Fang H, Xu Y, Lee S, Zhu J (2006) Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv Funct Mater 16:387–394CrossRef
28.
Zurück zum Zitat Harada Y, Li X, Bohn P, Nuzzo R (2016) Catalytic amplification of the soft lithographic patterning of si nonelectrochemical orthogonal fabrication of photoluminescent porous si pixel arrays. J Am Chem Soc 123:8709–8717CrossRef Harada Y, Li X, Bohn P, Nuzzo R (2016) Catalytic amplification of the soft lithographic patterning of si nonelectrochemical orthogonal fabrication of photoluminescent porous si pixel arrays. J Am Chem Soc 123:8709–8717CrossRef
29.
Zurück zum Zitat Hildreth O, Brown D, Wong C (2011) 3D Out-of-plane rotational etching with pinned catalysts in metal-assisted chemical etching of silicon. Adv Funct Mater 21:3119–3128CrossRef Hildreth O, Brown D, Wong C (2011) 3D Out-of-plane rotational etching with pinned catalysts in metal-assisted chemical etching of silicon. Adv Funct Mater 21:3119–3128CrossRef
30.
Zurück zum Zitat Yae S, Morii Y, Fukumuro N, Matsuda H (2012) Catalytic activity of noble metals for metal-assisted chemical etching of silicon. Nanoscale Res Lett 7:352–356CrossRef Yae S, Morii Y, Fukumuro N, Matsuda H (2012) Catalytic activity of noble metals for metal-assisted chemical etching of silicon. Nanoscale Res Lett 7:352–356CrossRef
31.
Zurück zum Zitat Chartier C, Bastide S, Lévy-Clément C (2008) Metal-assisted chemical etching of silicon in HF–H2O2. Electrochim Acta 53:5509–5516CrossRef Chartier C, Bastide S, Lévy-Clément C (2008) Metal-assisted chemical etching of silicon in HF–H2O2. Electrochim Acta 53:5509–5516CrossRef
32.
Zurück zum Zitat Yun M (2000) Investigation of KOH anisotropic etching for the fabrication of sharp tips in silicon-on-insulator (SOI) material. J Korean Phys Soc 37:605–610CrossRef Yun M (2000) Investigation of KOH anisotropic etching for the fabrication of sharp tips in silicon-on-insulator (SOI) material. J Korean Phys Soc 37:605–610CrossRef
33.
Zurück zum Zitat Quiroga-González E, Ossei-Wusu E, Carstensen J, Föll H (2011) How to make optimized arrays of si wires suitable as superior anode for li-ion batteries. J Electrochem Soc 158:E119–E123CrossRef Quiroga-González E, Ossei-Wusu E, Carstensen J, Föll H (2011) How to make optimized arrays of si wires suitable as superior anode for li-ion batteries. J Electrochem Soc 158:E119–E123CrossRef
34.
Zurück zum Zitat Peng K, Fang H, Hu J, Wu Y, Zhu J, Yan Y, Lee S (2006) Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. Chem Eur J 12:7942–7947CrossRef Peng K, Fang H, Hu J, Wu Y, Zhu J, Yan Y, Lee S (2006) Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. Chem Eur J 12:7942–7947CrossRef
35.
Zurück zum Zitat Abouda-Lachiheb M, Nafie N, Bouaicha M (2012) The dual role of silver during silicon etching in HF solution. Nanoscale Res Lett 7:455–459CrossRef Abouda-Lachiheb M, Nafie N, Bouaicha M (2012) The dual role of silver during silicon etching in HF solution. Nanoscale Res Lett 7:455–459CrossRef
36.
Zurück zum Zitat Bastide S, Quang N, Monna R, Lévy-Clément C (2009) Chemical etching of Si by Ag nanocatalysts in HF–H2O2: application to multicrystalline Si solar cell texturisation. Phys Status Solidi C 6:1536–1540CrossRef Bastide S, Quang N, Monna R, Lévy-Clément C (2009) Chemical etching of Si by Ag nanocatalysts in HF–H2O2: application to multicrystalline Si solar cell texturisation. Phys Status Solidi C 6:1536–1540CrossRef
37.
Zurück zum Zitat Li S, Ma W, Zhou Y, Chen X, Xiao Y, Ma M, Zhu W, Wie F (2014) Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature. Nanoscale Res Lett 9:196–203CrossRef Li S, Ma W, Zhou Y, Chen X, Xiao Y, Ma M, Zhu W, Wie F (2014) Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature. Nanoscale Res Lett 9:196–203CrossRef
38.
Zurück zum Zitat Peng K, Lu A, Zhang R, Lee S (2008) Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Adv Funct Mater 18:3026–3035CrossRef Peng K, Lu A, Zhang R, Lee S (2008) Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Adv Funct Mater 18:3026–3035CrossRef
39.
Zurück zum Zitat Tsujino K, Matsumura M (2007) Morphology of nanoholes formed in silicon by wet etching in solutions containing HF and H2O2 at different concentrations using silver nanoparticles as catalysts. Electrochim Acta 53:28–34CrossRef Tsujino K, Matsumura M (2007) Morphology of nanoholes formed in silicon by wet etching in solutions containing HF and H2O2 at different concentrations using silver nanoparticles as catalysts. Electrochim Acta 53:28–34CrossRef
40.
Zurück zum Zitat Choi H, Baek S, Jang HS, Kim S, Oh B, Kim J (2011) Optimization of metal-assisted chemical etching process in fabrication of p-type silicon wire arrays. Curr Appl Phys 11:S25–S29CrossRef Choi H, Baek S, Jang HS, Kim S, Oh B, Kim J (2011) Optimization of metal-assisted chemical etching process in fabrication of p-type silicon wire arrays. Curr Appl Phys 11:S25–S29CrossRef
41.
Zurück zum Zitat Geyer N, Fuhrmann B, Leipner HS, Werner P (2013) Ag-mediated charge transport during metal-assisted chemical etching of silicon nanowires. ACS Appl Mater Interfaces 5:4302–4308CrossRef Geyer N, Fuhrmann B, Leipner HS, Werner P (2013) Ag-mediated charge transport during metal-assisted chemical etching of silicon nanowires. ACS Appl Mater Interfaces 5:4302–4308CrossRef
42.
Zurück zum Zitat Um H, Kim N, Lee K, Hwang I, Seo J, Yu Y, Duane P, Wober M, Seo K (2015) Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications. Sci Rep 5:11277CrossRef Um H, Kim N, Lee K, Hwang I, Seo J, Yu Y, Duane P, Wober M, Seo K (2015) Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications. Sci Rep 5:11277CrossRef
43.
Zurück zum Zitat Choi K, Song Y, Ki B, Oh J (2017) Nonlinear etch rate of au-assisted chemical etching of silicon. ACS Omega 2:2100–2105CrossRef Choi K, Song Y, Ki B, Oh J (2017) Nonlinear etch rate of au-assisted chemical etching of silicon. ACS Omega 2:2100–2105CrossRef
Metadaten
Titel
Silicon microstructures through the production of silicon nanowires by metal-assisted chemical etching, used as sacrificial material
verfasst von
O. Pérez-Díaz
E. Quiroga-González
N. R. Silva-González
Publikationsdatum
15.10.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 3/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3003-z

Weitere Artikel der Ausgabe 3/2019

Journal of Materials Science 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.