Skip to main content
Erschienen in: Journal of Materials Science 3/2019

12.10.2018 | Electronic materials

Using in operando diffraction to relate lattice strain with degradation mechanism in a NMC battery

verfasst von: Shikhar Krishn Jha, Harry Charalambous, John S. Okasinski, Thomas Tsakalakos

Erschienen in: Journal of Materials Science | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Crystallographic structural changes in a commercial 5 Ah prismatic graphite–NMC battery were investigated during its operation using energy-dispersive X-ray diffraction. The characteristic diffraction peaks for the anode and cathode were identified, and their peak positions were linked to the charge–discharge cycle of the battery. The edge of the negative terminal of battery was shown to undergo irregular cycling behavior. Stresses developed at the battery layer interfaces were proposed to be the source for this deterioration, which limits the lifetime of the battery. The effect of pulse discharge on strain in cathode has also been studied.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kempener R, Borden E (2015) Battery storage for renewables: market status and technology outlook. IRENA International Energy Storage Policy and Regulation, Abu Dhabi Kempener R, Borden E (2015) Battery storage for renewables: market status and technology outlook. IRENA International Energy Storage Policy and Regulation, Abu Dhabi
2.
Zurück zum Zitat Sakti A, Michalek JJ, Fuchs ER, Whitacre JF (2015) A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification. J Power Sources 273:966–980CrossRef Sakti A, Michalek JJ, Fuchs ER, Whitacre JF (2015) A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification. J Power Sources 273:966–980CrossRef
3.
4.
Zurück zum Zitat Doeff MM, Brodd RJ (2013) Battery cathode, in batteries for sustainability: selected entries from the encyclopedia. R.A. Meyers, New York Doeff MM, Brodd RJ (2013) Battery cathode, in batteries for sustainability: selected entries from the encyclopedia. R.A. Meyers, New York
5.
Zurück zum Zitat Fu K, Gong Y, Liu B et al (2017) Toward garnet electrolyte–based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci Adv 3(4):e1601659CrossRef Fu K, Gong Y, Liu B et al (2017) Toward garnet electrolyte–based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci Adv 3(4):e1601659CrossRef
6.
Zurück zum Zitat Han X, Gong Y, Fu K et al (2017) Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 16(5):572–579CrossRef Han X, Gong Y, Fu K et al (2017) Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 16(5):572–579CrossRef
7.
Zurück zum Zitat Tarascon JM, Armand M (2010) Issues and challenges facing rechargeable lithium batteries. In: Dusastre V (ed) Materials for sustainable energy. Co-Published with Macmillan Publishers Ltd, London, pp 171–179CrossRef Tarascon JM, Armand M (2010) Issues and challenges facing rechargeable lithium batteries. In: Dusastre V (ed) Materials for sustainable energy. Co-Published with Macmillan Publishers Ltd, London, pp 171–179CrossRef
8.
Zurück zum Zitat Buchberger I, Seidlmayer S, Pokharel A, Piana M, Hattendoff J, Kudejova P, Gilles R, Gasteiger HA (2015) Aging analysis of graphite/LiNi1/3Mn1/3Co1/3O2 cells using XRD, PGAA, and AC impedance. J Electrochem Soc 162(14):A2737–A2746CrossRef Buchberger I, Seidlmayer S, Pokharel A, Piana M, Hattendoff J, Kudejova P, Gilles R, Gasteiger HA (2015) Aging analysis of graphite/LiNi1/3Mn1/3Co1/3O2 cells using XRD, PGAA, and AC impedance. J Electrochem Soc 162(14):A2737–A2746CrossRef
9.
Zurück zum Zitat Vetter J (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147(1):269–281CrossRef Vetter J (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147(1):269–281CrossRef
10.
Zurück zum Zitat Newman J (1995) Optimization of porosity and thickness of a battery electrode by means of a reaction-zone model. J Electrochem Soc 142(1):97–101CrossRef Newman J (1995) Optimization of porosity and thickness of a battery electrode by means of a reaction-zone model. J Electrochem Soc 142(1):97–101CrossRef
11.
Zurück zum Zitat Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194CrossRef Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194CrossRef
12.
Zurück zum Zitat Albertini VR, Perfetti P, Ronci F, Reale P, Scrosati B (2001) In situ studies of electrodic materials in Li-ion cells upon cycling performed by very-high-energy X-ray diffraction. Appl Phys Lett 79(1):27–29CrossRef Albertini VR, Perfetti P, Ronci F, Reale P, Scrosati B (2001) In situ studies of electrodic materials in Li-ion cells upon cycling performed by very-high-energy X-ray diffraction. Appl Phys Lett 79(1):27–29CrossRef
13.
Zurück zum Zitat Glazer MPB, Okasinski JS, Almer JD, Ren Y (2016) High-energy X-ray scattering studies of battery materials. MRS Bull 41(06):460–465CrossRef Glazer MPB, Okasinski JS, Almer JD, Ren Y (2016) High-energy X-ray scattering studies of battery materials. MRS Bull 41(06):460–465CrossRef
14.
Zurück zum Zitat Iizumi M (1986) Real-time neutron diffraction studies of phase transition kinetics. Physica B + C 136(1):36–41 Iizumi M (1986) Real-time neutron diffraction studies of phase transition kinetics. Physica B + C 136(1):36–41
15.
Zurück zum Zitat Lin F, Liu Y, Yu X et al (2017) Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chem Rev 117(21):13123–13186CrossRef Lin F, Liu Y, Yu X et al (2017) Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chem Rev 117(21):13123–13186CrossRef
16.
Zurück zum Zitat Taminato S, Yonemura M, Shiotani S et al (2016) Real-time observations of lithium battery reactions-operando neutron diffraction analysis during practical operation. Sci Rep 6:28843CrossRef Taminato S, Yonemura M, Shiotani S et al (2016) Real-time observations of lithium battery reactions-operando neutron diffraction analysis during practical operation. Sci Rep 6:28843CrossRef
17.
Zurück zum Zitat Trucano PC, Chen R (1975) Structure of graphite by neutron diffraction. Nature 258:136–137CrossRef Trucano PC, Chen R (1975) Structure of graphite by neutron diffraction. Nature 258:136–137CrossRef
18.
Zurück zum Zitat Yin SC, Rho YH, Swainson I, Nazar LF (2006) X-ray/neutron diffraction and electrochemical studies of lithium De/Re-Intercalation in Li1−xCo1/3Ni1/3Mn1/3O2 (x = 0 → 1). Chem Mater 18(7):1901–1910CrossRef Yin SC, Rho YH, Swainson I, Nazar LF (2006) X-ray/neutron diffraction and electrochemical studies of lithium De/Re-Intercalation in Li1−xCo1/3Ni1/3Mn1/3O2 (x = 0 → 1). Chem Mater 18(7):1901–1910CrossRef
19.
Zurück zum Zitat Allen MG, Mehregany M, Howe RT, Senturi SD (1987) Microfabricated structures for the in situ measurement of residual stress, Young’s modulus, and ultimate strain of thin films. Appl Phys Lett 51(4):241–243CrossRef Allen MG, Mehregany M, Howe RT, Senturi SD (1987) Microfabricated structures for the in situ measurement of residual stress, Young’s modulus, and ultimate strain of thin films. Appl Phys Lett 51(4):241–243CrossRef
20.
Zurück zum Zitat Covey-Crump SJ, Schofiled PF, Stretton IC, Daymond MR, Kight KS, Tant J (2013) Monitoring in situ stress/strain behaviour during plastic yielding in polymineralic rocks using neutron diffraction. J Struct Geol 47:36–51CrossRef Covey-Crump SJ, Schofiled PF, Stretton IC, Daymond MR, Kight KS, Tant J (2013) Monitoring in situ stress/strain behaviour during plastic yielding in polymineralic rocks using neutron diffraction. J Struct Geol 47:36–51CrossRef
21.
Zurück zum Zitat Croft M, Zhong Z, Jiswawi N, Zakharchenko I, Holtz RL, Skaritka J, Fast T, Sadananda K, Lakshmipathy M, Tsakalakos T (2005) Strain profiling of fatigue crack overload effects using energy dispersive X-ray diffraction. Int J Fatigue 27(10):1408–1419CrossRef Croft M, Zhong Z, Jiswawi N, Zakharchenko I, Holtz RL, Skaritka J, Fast T, Sadananda K, Lakshmipathy M, Tsakalakos T (2005) Strain profiling of fatigue crack overload effects using energy dispersive X-ray diffraction. Int J Fatigue 27(10):1408–1419CrossRef
22.
Zurück zum Zitat Daymond MR, Bourke MAM, Von Dreele RB, Clausen B, Lorentzen T (1997) Use of Rietveld refinement for elastic macrostrain determination and for evaluation of plastic strain history from diffraction spectra. J Appl Phys 82(4):1554–1562CrossRef Daymond MR, Bourke MAM, Von Dreele RB, Clausen B, Lorentzen T (1997) Use of Rietveld refinement for elastic macrostrain determination and for evaluation of plastic strain history from diffraction spectra. J Appl Phys 82(4):1554–1562CrossRef
23.
Zurück zum Zitat Paxton WA, Akdoğan EK, Şavkliyildiz I, Chokshi AU, Silver SX, Tsakalakos T, Zhong Z (2014) Asynchronous stoichiometric response in lithium iron phosphate batteries. J Mater Res 30(3):417–423CrossRef Paxton WA, Akdoğan EK, Şavkliyildiz I, Chokshi AU, Silver SX, Tsakalakos T, Zhong Z (2014) Asynchronous stoichiometric response in lithium iron phosphate batteries. J Mater Res 30(3):417–423CrossRef
24.
Zurück zum Zitat Paxton WA, Zhong Z, Tsakalakos T (2015) Tracking inhomogeneity in high-capacity lithium iron phosphate batteries. J Power Sources 275:429–434CrossRef Paxton WA, Zhong Z, Tsakalakos T (2015) Tracking inhomogeneity in high-capacity lithium iron phosphate batteries. J Power Sources 275:429–434CrossRef
25.
Zurück zum Zitat Billaud D, Henry FX, Lelaurian M, Wilmann P (1996) Revisited structures of dense and dilute stage II lithium-graphite intercalation compounds. J Phys Chem Solids 57(6):775–781CrossRef Billaud D, Henry FX, Lelaurian M, Wilmann P (1996) Revisited structures of dense and dilute stage II lithium-graphite intercalation compounds. J Phys Chem Solids 57(6):775–781CrossRef
26.
Zurück zum Zitat Park JS, Okasinski J, Chatterjee K, Chen Y, Almer J (2017) Non-destructive characterization of engineering materials using high-energy X-rays at the advanced photon source. Synchrotron Radiat News 30(3):9–16CrossRef Park JS, Okasinski J, Chatterjee K, Chen Y, Almer J (2017) Non-destructive characterization of engineering materials using high-energy X-rays at the advanced photon source. Synchrotron Radiat News 30(3):9–16CrossRef
27.
Zurück zum Zitat Wang XL, An K, Cai L et al (2012) Visualizing the chemistry and structure dynamics in lithium-ion batteries by in situ neutron diffraction. Sci Rep 2:747CrossRef Wang XL, An K, Cai L et al (2012) Visualizing the chemistry and structure dynamics in lithium-ion batteries by in situ neutron diffraction. Sci Rep 2:747CrossRef
28.
Zurück zum Zitat Dahn JR, Fong R, Spoon MJ (1990) Suppression of staging in lithium-intercalated carbon by disorder in the host. Phys Rev B 42(10):6424–6432CrossRef Dahn JR, Fong R, Spoon MJ (1990) Suppression of staging in lithium-intercalated carbon by disorder in the host. Phys Rev B 42(10):6424–6432CrossRef
29.
Zurück zum Zitat Majid N, Hafiz S, Arianto S et al (2016) Analysis of effective pulse current charging method for lithium ion battery. J Phys Conf Ser 817:012008CrossRef Majid N, Hafiz S, Arianto S et al (2016) Analysis of effective pulse current charging method for lithium ion battery. J Phys Conf Ser 817:012008CrossRef
30.
Zurück zum Zitat Guerard D, Herold A (1975) Intercalation of lithium into graphite and other carbons. Carbon 13(4):337–345CrossRef Guerard D, Herold A (1975) Intercalation of lithium into graphite and other carbons. Carbon 13(4):337–345CrossRef
31.
Zurück zum Zitat Ogumi Z, Inaba M (1998) electrochemical lithium intercalation within carbonaceous materials: intercalcation process, surface film formation, and lithium diffusion. Bull Chem Soc Jpn 71(14):521–534CrossRef Ogumi Z, Inaba M (1998) electrochemical lithium intercalation within carbonaceous materials: intercalcation process, surface film formation, and lithium diffusion. Bull Chem Soc Jpn 71(14):521–534CrossRef
32.
Zurück zum Zitat Dolotko O, Senyshyn A, Muhlbauer MJ, Nikolowski K, Ehrenberg H (2014) Understanding structural changes in NMC Li-ion cells by in situ neutron diffraction. J Power Sources 255:197–203CrossRef Dolotko O, Senyshyn A, Muhlbauer MJ, Nikolowski K, Ehrenberg H (2014) Understanding structural changes in NMC Li-ion cells by in situ neutron diffraction. J Power Sources 255:197–203CrossRef
33.
Zurück zum Zitat Gu YJ, Chen YB, Liu HQ, Wang YM, Wang CL, Wu HK (2011) Structural characterization of layered LiNi0.85−xMnxCo0.15O2 with x = 0, 0.1, 0.2 and 0.4 oxide electrodes for Li batteries. J Alloys Compd 509(30):7915–7921CrossRef Gu YJ, Chen YB, Liu HQ, Wang YM, Wang CL, Wu HK (2011) Structural characterization of layered LiNi0.85−xMnxCo0.15O2 with x = 0, 0.1, 0.2 and 0.4 oxide electrodes for Li batteries. J Alloys Compd 509(30):7915–7921CrossRef
34.
Zurück zum Zitat Kim JM, Chung HT (2004) The first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V. Electrochim Acta 49(6):937–944CrossRef Kim JM, Chung HT (2004) The first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V. Electrochim Acta 49(6):937–944CrossRef
35.
Zurück zum Zitat Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276CrossRef Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276CrossRef
36.
Zurück zum Zitat Liao PY, Duh JG, Lee JF, Sheu HS (2007) Structural investigation of Li1−xNi0.5Co0.25Mn0.25O2 by in situ XAS and XRD measurements. Electrochim Acta 53(4):1850–1857CrossRef Liao PY, Duh JG, Lee JF, Sheu HS (2007) Structural investigation of Li1−xNi0.5Co0.25Mn0.25O2 by in situ XAS and XRD measurements. Electrochim Acta 53(4):1850–1857CrossRef
37.
Zurück zum Zitat Mohanty D, Sefat AS, Kalnaus S, Li J, Meisner RA, Payzant EA, Abraham DP, Wood DL, Daniel C (2013) Investigating phase transformation in the Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies. J Mater Chem A 1(20):6249–6261CrossRef Mohanty D, Sefat AS, Kalnaus S, Li J, Meisner RA, Payzant EA, Abraham DP, Wood DL, Daniel C (2013) Investigating phase transformation in the Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies. J Mater Chem A 1(20):6249–6261CrossRef
39.
Zurück zum Zitat Hooper A, Powell RJ, Marshall TJ, Neat RJ (1989) Pulse discharge characteristics of solid-state lithium batteries. J Power Sources 27(1):3–13CrossRef Hooper A, Powell RJ, Marshall TJ, Neat RJ (1989) Pulse discharge characteristics of solid-state lithium batteries. J Power Sources 27(1):3–13CrossRef
40.
Zurück zum Zitat Leng F, Tan CM, Pecht M (2015) Effect of temperature on the aging rate of Li ion battery operating above room temperature. Sci Rep 5:12967CrossRef Leng F, Tan CM, Pecht M (2015) Effect of temperature on the aging rate of Li ion battery operating above room temperature. Sci Rep 5:12967CrossRef
Metadaten
Titel
Using in operando diffraction to relate lattice strain with degradation mechanism in a NMC battery
verfasst von
Shikhar Krishn Jha
Harry Charalambous
John S. Okasinski
Thomas Tsakalakos
Publikationsdatum
12.10.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 3/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3007-8

Weitere Artikel der Ausgabe 3/2019

Journal of Materials Science 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.