Skip to main content

2022 | OriginalPaper | Buchkapitel

Simplified Aerodynamic Modeling of a Bird Robot Using the DeNOC Matrices

verfasst von : Anil K. Sharma, Sasanka S. Sinha, Rajesh Kumar, S. K. Saha

Erschienen in: Machines, Mechanism and Robotics

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To design an efficient flapping wing aerial vehicle, a simplified aerodynamic model of a bird robot is presented in this paper. A bird robot was divided into three modules, namely, main body, right wing, and left wing. The main body of the bird was considered as spheroidal prolate, and the wings as rigid plate with airfoil cross-section. The robotic bird was considered as tree-type multibody system, where the main body is parent and wings are children. Each wing was connected to the main body using a two-degree-of-freedom (DoF) joint, which provides twisting and flapping motions to the wings. The kinematic configuration of the bird model was represented using the modified Denavit–Hartenberg (DH) parameters. The flapping and twisting of the wings generate both lift and forward thrust for the bird flight. The equations of motion of the robotic bird were derived using the DeNOC matrices. The constant drag and lift coefficients were considered for the main body of robotic bird; however, variable drag and lift coefficients were used for the aerodynamic modeling of the wings. The sinusoidal trajectory was considered as the desired joint motion for twisting and flapping of the wings. A proportional-derivative (PD) controller was used for the force forward simulation of the robotic bird. A relation between the flapping frequency and lift force on the main body was established.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Withers PC (1981) An aerodynamic analysis of bird wings as fixed aerofoils. J Exp Biol 90:143–162 Withers PC (1981) An aerodynamic analysis of bird wings as fixed aerofoils. J Exp Biol 90:143–162
2.
Zurück zum Zitat Norberg UM (1990) Vertebrate flight: mechanics, physiology, morphology, ecology and evolution. Springer, New York. ISBN 13:978-3-642-83850-7 Norberg UM (1990) Vertebrate flight: mechanics, physiology, morphology, ecology and evolution. Springer, New York. ISBN 13:978-3-642-83850-7
3.
Zurück zum Zitat Spedding GR (1992) The aerodynamics of flight. Mech Animal Locomot 11:52–111 Spedding GR (1992) The aerodynamics of flight. Mech Animal Locomot 11:52–111
4.
Zurück zum Zitat Tobalske BW, Dial KP (1996) Flight kinematics of black- billed magpies and pigeons over a wide range of speeds. J Exp Biol 199:263–280CrossRef Tobalske BW, Dial KP (1996) Flight kinematics of black- billed magpies and pigeons over a wide range of speeds. J Exp Biol 199:263–280CrossRef
5.
Zurück zum Zitat Berg C, Rayner J (1995) The moment of inertia of bird wings and the inertial power requirement for flapping flight. J Exp Biol 198(8):1655–1664CrossRef Berg C, Rayner J (1995) The moment of inertia of bird wings and the inertial power requirement for flapping flight. J Exp Biol 198(8):1655–1664CrossRef
6.
Zurück zum Zitat Poore SO, Sanchez-Haiman A, Goslow GE Jr (1997) Wing upstroke and the evolution of flapping flight. Nature 387(6635):799CrossRef Poore SO, Sanchez-Haiman A, Goslow GE Jr (1997) Wing upstroke and the evolution of flapping flight. Nature 387(6635):799CrossRef
7.
Zurück zum Zitat Wu JC, Popović Z (2003) Realistic modeling of bird flight animations. In: ACM Trans Graph (TOG) 3:888–895 Wu JC, Popović Z (2003) Realistic modeling of bird flight animations. In: ACM Trans Graph (TOG) 3:888–895
8.
Zurück zum Zitat Couceiro MS, Figueiredo CM, Ferreira NF, Machado JT (2009) The dynamic modeling of a bird robot. In: Proceedings of the 9th conference on autonomous robot systems and competitions (Robotica’09) Couceiro MS, Figueiredo CM, Ferreira NF, Machado JT (2009) The dynamic modeling of a bird robot. In: Proceedings of the 9th conference on autonomous robot systems and competitions (Robotica’09)
9.
Zurück zum Zitat Malik MA, Ahmad F (2010) Effect of different design parameters on lift, thrust, and drag of an ornithopter. In: Proceedings of the World Congress on Engineering, vol 2, pp 1460–1465 Malik MA, Ahmad F (2010) Effect of different design parameters on lift, thrust, and drag of an ornithopter. In: Proceedings of the World Congress on Engineering, vol 2, pp 1460–1465
10.
Zurück zum Zitat Shepherd S, Valasek J (2012) Modeling and analysis of eagle flight mechanics from experimental flight data. In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2012, p 27 Shepherd S, Valasek J (2012) Modeling and analysis of eagle flight mechanics from experimental flight data. In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2012, p 27
11.
Zurück zum Zitat Chin DD, Lentink D (2016) Flapping wing aerodynamics: from insects to vertebrates. J Exp Biol 219(7):920–932CrossRef Chin DD, Lentink D (2016) Flapping wing aerodynamics: from insects to vertebrates. J Exp Biol 219(7):920–932CrossRef
12.
Zurück zum Zitat Dvořák R (2016) Aerodynamics of bird flight. In: EPJ Web of Conferences, vol 114, p 01001, EDP Sciences Dvořák R (2016) Aerodynamics of bird flight. In: EPJ Web of Conferences, vol 114, p 01001, EDP Sciences
13.
Zurück zum Zitat Hassanalian M, Abdelkefi A, Wei M, Ziaei-Rad S (2017) A novel methodology for wing sizing of bio-inspired flapping wing micro air vehicles: theory and prototype. Acta Mech 228(3):1097–1113CrossRef Hassanalian M, Abdelkefi A, Wei M, Ziaei-Rad S (2017) A novel methodology for wing sizing of bio-inspired flapping wing micro air vehicles: theory and prototype. Acta Mech 228(3):1097–1113CrossRef
14.
Zurück zum Zitat Chen Y, Wang H, Helbling EF, Jafferis NT, Zufferey R, Ong A, Ma K, Gravish N, Chirarattananon P, Kovac M, Wood RJ (2017) A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Sci Robot 2(11) eaao5619 Chen Y, Wang H, Helbling EF, Jafferis NT, Zufferey R, Ong A, Ma K, Gravish N, Chirarattananon P, Kovac M, Wood RJ (2017) A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Sci Robot 2(11) eaao5619
15.
Zurück zum Zitat Saha SK (1993) Modeling and simulation of space robots. In: Proceedings of 1993 IEEE/RSJ International conference on intelligent robots and systems (IROS'93), vol 3, pp 2033–2040 Saha SK (1993) Modeling and simulation of space robots. In: Proceedings of 1993 IEEE/RSJ International conference on intelligent robots and systems (IROS'93), vol 3, pp 2033–2040
16.
Zurück zum Zitat Saha SK (1996) A unified approach to space robot kinematics. IEEE Trans Robot Autom 12(3):401–405CrossRef Saha SK (1996) A unified approach to space robot kinematics. IEEE Trans Robot Autom 12(3):401–405CrossRef
17.
Zurück zum Zitat Saha SK (1999) Analytical expression for the inverted inertia matrix of serial robots. Int J Robot Res 18(1):20–36 Saha SK (1999) Analytical expression for the inverted inertia matrix of serial robots. Int J Robot Res 18(1):20–36
18.
Zurück zum Zitat Saha SK (2014) Introduction to robotics, 2nd edn. Tata McGraw-Hill Education, New Delhi Saha SK (2014) Introduction to robotics, 2nd edn. Tata McGraw-Hill Education, New Delhi
19.
Zurück zum Zitat Angeles J, Lee S (1988) The formulation of dynamical equations of holonomic mechanical systems using a natural orthogonal complement. Trans ASME J Appl Mech 55:243–244 Angeles J, Lee S (1988) The formulation of dynamical equations of holonomic mechanical systems using a natural orthogonal complement. Trans ASME J Appl Mech 55:243–244
Metadaten
Titel
Simplified Aerodynamic Modeling of a Bird Robot Using the DeNOC Matrices
verfasst von
Anil K. Sharma
Sasanka S. Sinha
Rajesh Kumar
S. K. Saha
Copyright-Jahr
2022
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-0550-5_136

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.