Skip to main content

2018 | OriginalPaper | Buchkapitel

47. Simulation and Optimization of a Mini Compound Parabolic Collector with a Coaxial Flow System

verfasst von : Dimitrios N. Korres, Christos Tzivanidis

Erschienen in: The Role of Exergy in Energy and the Environment

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, a mini-compound parabolic collector with a coaxial flow evacuated tube was investigated and analyzed. The concentrator was designed optimally for zero incident angles while the collector was tested considering that solar radiation falls perpendicular on the aperture. The collector’s thermal efficiency was examined first, and the convection regime both at the inner (delivery) tube and at the annuli region was calculated and compared to respective theoretical approaches. Furthermore, the temperature fields of the working medium, the absorber, and the glass envelope were determined and presented, while the inner diameter of the delivery tube was modified by taking several different values considering that the absorber surface is directly exposed on the environment. The results revealed that the possible increment on the thermal performance going from the worst to the best diameter scenario is greater than 5.7%. The specific collector was designed and simulated in Solidworks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Korres D, Tzivanidis C (2016) Thermal analysis of an entire flat plate collector with a serpentine flow system and determination of the water and air flow and convection regime. In: ECOS 2016: Proceedings of 29th international conference on efficiency, cost, optimization, simulation, and environmental impact of energy systems, Portoroz, Slovenia Korres D, Tzivanidis C (2016) Thermal analysis of an entire flat plate collector with a serpentine flow system and determination of the water and air flow and convection regime. In: ECOS 2016: Proceedings of 29th international conference on efficiency, cost, optimization, simulation, and environmental impact of energy systems, Portoroz, Slovenia
2.
Zurück zum Zitat Cooper PI (1981) The effect of inclination on the heat loss from flat-plate solar collectors. Solar Energy 27:413–420CrossRef Cooper PI (1981) The effect of inclination on the heat loss from flat-plate solar collectors. Solar Energy 27:413–420CrossRef
3.
Zurück zum Zitat Bellos E, Tzivanidis C, Korres D, Antonopoulos KA (2015) Thermal analysis of a flat plate collector with Solidworks and determination of convection heat coefficient between water and absorber. In: ECOS 2016: Proceedings of 28th international conference on efficiency, cost, optimization, simulation, and environmental impact of energy systems, Pau, France Bellos E, Tzivanidis C, Korres D, Antonopoulos KA (2015) Thermal analysis of a flat plate collector with Solidworks and determination of convection heat coefficient between water and absorber. In: ECOS 2016: Proceedings of 28th international conference on efficiency, cost, optimization, simulation, and environmental impact of energy systems, Pau, France
4.
Zurück zum Zitat Subiantoro A, Tiow OK (2013) Analytical models for the computation and optimization of single and double glazing flat plate solar collectors with normal and small air gap spacing. Applied Energy 104:392–399CrossRef Subiantoro A, Tiow OK (2013) Analytical models for the computation and optimization of single and double glazing flat plate solar collectors with normal and small air gap spacing. Applied Energy 104:392–399CrossRef
5.
Zurück zum Zitat Korres D, Tzivanidis C (2017) A new mini-CPC under thermal and optical investigation, IC-SCCE 2016: Renewable Energy, article in press Korres D, Tzivanidis C (2017) A new mini-CPC under thermal and optical investigation, IC-SCCE 2016: Renewable Energy, article in press
6.
Zurück zum Zitat Korres D, Tzivanidis C (2016) Optical and thermal analysis of a new U-type evacuated tube collector with a mini-compound parabolic concentrator and a cylindrical absorber. In: ECOS 2016: Proceedings of 29th international conference on efficiency, cost, optimization, simulation, and environmental impact of energy systems, Portoroz, Slovenia Korres D, Tzivanidis C (2016) Optical and thermal analysis of a new U-type evacuated tube collector with a mini-compound parabolic concentrator and a cylindrical absorber. In: ECOS 2016: Proceedings of 29th international conference on efficiency, cost, optimization, simulation, and environmental impact of energy systems, Portoroz, Slovenia
7.
Zurück zum Zitat Korres D, Tzivanidis C, Alexopoulos J, Mitsopoulos G (2016) Thermal and optical investigation of a U-type evacuated tube collector with a mini-compound parabolic concentrator and a flat absorber. In: IC-SCCE 2016: Proceedings of 7th international conference from scientific computing to computational engineering, Athens, Greece Korres D, Tzivanidis C, Alexopoulos J, Mitsopoulos G (2016) Thermal and optical investigation of a U-type evacuated tube collector with a mini-compound parabolic concentrator and a flat absorber. In: IC-SCCE 2016: Proceedings of 7th international conference from scientific computing to computational engineering, Athens, Greece
8.
Zurück zum Zitat Li X, Dai YJ, Li Y, Wang RZ (2013) Comparative study on two novel intermediate temperature CPC solar collectors with the U-shape evacuated tubular absorber. Solar Energy 93:220–234CrossRef Li X, Dai YJ, Li Y, Wang RZ (2013) Comparative study on two novel intermediate temperature CPC solar collectors with the U-shape evacuated tubular absorber. Solar Energy 93:220–234CrossRef
9.
Zurück zum Zitat Buttinger F, Beikircher T, Prӧll Μ, Schӧlkopf W (2010) Development of a new flat stationary evacuated CPC-collector for process heat applications. Solar Energy 84:1166–1174CrossRef Buttinger F, Beikircher T, Prӧll Μ, Schӧlkopf W (2010) Development of a new flat stationary evacuated CPC-collector for process heat applications. Solar Energy 84:1166–1174CrossRef
10.
Zurück zum Zitat Antonelli M, Francesconi M, Di Marco P, Desideri U (2016) Analysis of heat transfer in different CPC solar collectors: a CFD approach. Applied Thermal Engineering 101:479–489CrossRef Antonelli M, Francesconi M, Di Marco P, Desideri U (2016) Analysis of heat transfer in different CPC solar collectors: a CFD approach. Applied Thermal Engineering 101:479–489CrossRef
11.
Zurück zum Zitat Wang Y, Liu Q, Lei J, Jin J (2014) A three-dimensional simulation of a parabolic trough solar collector system using molten salt as heat transfer fluid. Applied Thermal Engineering 70:464–476 Wang Y, Liu Q, Lei J, Jin J (2014) A three-dimensional simulation of a parabolic trough solar collector system using molten salt as heat transfer fluid. Applied Thermal Engineering 70:464–476
12.
Zurück zum Zitat Tzivanidis C, Bellos E, Korres D, Antonopoulos KA, Mitsopoulos G (2015) Thermal and optical efficiency investigation of a parabolic trough collector. Case Studies in Thermal Engineering 6:226–237CrossRef Tzivanidis C, Bellos E, Korres D, Antonopoulos KA, Mitsopoulos G (2015) Thermal and optical efficiency investigation of a parabolic trough collector. Case Studies in Thermal Engineering 6:226–237CrossRef
13.
Zurück zum Zitat Ayompe LM, Duffy A (2013) Thermal performance analysis of a solar water heating system with heat pipe evacuated tube collector using data from a field trial. Solar Energy 90:17–28CrossRef Ayompe LM, Duffy A (2013) Thermal performance analysis of a solar water heating system with heat pipe evacuated tube collector using data from a field trial. Solar Energy 90:17–28CrossRef
14.
Zurück zum Zitat Zheng H, Xiong J, Su Y, Zhang H (2014) Influence of the receiver’s back surface radiative characteristics on the performance of a heat-pipe evacuated-tube solar collector. Applied Energy 116:159–166CrossRef Zheng H, Xiong J, Su Y, Zhang H (2014) Influence of the receiver’s back surface radiative characteristics on the performance of a heat-pipe evacuated-tube solar collector. Applied Energy 116:159–166CrossRef
15.
Zurück zum Zitat Kim Y, Seo T (2007) Thermal performances comparisons of the glass evacuated tube solar collectors with shapes of absorber tube. Renewable Energy 32:772–795CrossRef Kim Y, Seo T (2007) Thermal performances comparisons of the glass evacuated tube solar collectors with shapes of absorber tube. Renewable Energy 32:772–795CrossRef
16.
Zurück zum Zitat Pei G, Li G, Zhou X, Ji J, Su Y (2012) Comparative experimental analysis of the thermal performance of evacuated tube solar water heater systems with and without a mini-compound parabolic concentrating (CPC) reflector(C=LT(1)). Energies:911–924 Pei G, Li G, Zhou X, Ji J, Su Y (2012) Comparative experimental analysis of the thermal performance of evacuated tube solar water heater systems with and without a mini-compound parabolic concentrating (CPC) reflector(C=LT(1)). Energies:911–924
17.
Zurück zum Zitat Gao Y, Fan R, Zhang XY, AN YJ, Wang MX, Gao YK, Yua Y (2014) Thermal performance and parameter analysis of a U-pipe evacuated solar tube collector. Solar Energy 107:714–727CrossRef Gao Y, Fan R, Zhang XY, AN YJ, Wang MX, Gao YK, Yua Y (2014) Thermal performance and parameter analysis of a U-pipe evacuated solar tube collector. Solar Energy 107:714–727CrossRef
18.
Zurück zum Zitat Ma L, Lu Z, Zhang J, Liang R (2010) Thermal performance analysis of the glass evacuated tube solar collector with U-tube. Building and Environment 45:1959–1967CrossRef Ma L, Lu Z, Zhang J, Liang R (2010) Thermal performance analysis of the glass evacuated tube solar collector with U-tube. Building and Environment 45:1959–1967CrossRef
19.
Zurück zum Zitat Kim JT, Ahn HT, Han H, Kim HT, Chun W (2007) The performance simulation of all-glass vacuum tubes with coaxial fluid conduit. Heat and mass transfer 34:587–597CrossRef Kim JT, Ahn HT, Han H, Kim HT, Chun W (2007) The performance simulation of all-glass vacuum tubes with coaxial fluid conduit. Heat and mass transfer 34:587–597CrossRef
20.
Zurück zum Zitat Glembin J, Rockendorf G, ScheurenInternal J (2010) Internal thermal coupling in direct-flow coaxial vacuum tube collectors. Solar Energy 84:1137–1146CrossRef Glembin J, Rockendorf G, ScheurenInternal J (2010) Internal thermal coupling in direct-flow coaxial vacuum tube collectors. Solar Energy 84:1137–1146CrossRef
21.
Zurück zum Zitat Zhang X, You S, Ge H, Gao Y, Xu W, Wangb M, He T, Zheng X (2014) Thermal performance of direct-flow coaxial evacuated-tube solar collectors with and without a heat shield. Energy Conversion and Management 84:80–87CrossRef Zhang X, You S, Ge H, Gao Y, Xu W, Wangb M, He T, Zheng X (2014) Thermal performance of direct-flow coaxial evacuated-tube solar collectors with and without a heat shield. Energy Conversion and Management 84:80–87CrossRef
22.
Zurück zum Zitat Ataee S, Ameri M (2015) Energy and exergy analysis of all-glass evacuated solar collector tubes with coaxial fluid conduit. Solar Energy 118:575–591CrossRef Ataee S, Ameri M (2015) Energy and exergy analysis of all-glass evacuated solar collector tubes with coaxial fluid conduit. Solar Energy 118:575–591CrossRef
23.
Zurück zum Zitat Han H, Kim JT, Ahn HT, Lee SJ (2008) A three-dimensional performance analysis of all-glass vacuum tube with coaxial fluid conduit. Heat and mass transfer 35:589–596CrossRef Han H, Kim JT, Ahn HT, Lee SJ (2008) A three-dimensional performance analysis of all-glass vacuum tube with coaxial fluid conduit. Heat and mass transfer 35:589–596CrossRef
24.
Zurück zum Zitat Bergman TL, Lavine AS, Incropera FP, Dewitt DP (2011) Fundamentals of heat and mass transfer, 7th edn. John Wiley & Sons Inc, (2011) Bergman TL, Lavine AS, Incropera FP, Dewitt DP (2011) Fundamentals of heat and mass transfer, 7th edn. John Wiley & Sons Inc, (2011)
Metadaten
Titel
Simulation and Optimization of a Mini Compound Parabolic Collector with a Coaxial Flow System
verfasst von
Dimitrios N. Korres
Christos Tzivanidis
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-89845-2_47