Skip to main content

2024 | OriginalPaper | Buchkapitel

Simulation of a GNR-FET

verfasst von : Giovanni Nastasi, Vittorio Romano

Erschienen in: Scientific Computing in Electrical Engineering

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A field effect transistor is simulated in the case the active area is made by a single graphene nanoribbon. At variance with large area graphene, an energy gap is present and this should improve the performance of the device as transistor. A drift-diffusion model which includes the degenerate effects, coupled to the Poisson equation for the electrostatic potential, is used. The mobility models are obtained, by a fitting procedure, solving numerically the semiclassical Boltzmann equation for the graphene nanoribbon, including also the edges scattering besides the electron-phonon interactions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010)CrossRef Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010)CrossRef
2.
Zurück zum Zitat Bresciani, M., Palestri, P., Esseni, D., Selmi, L.: Simple and efficient modeling of the E-k relationship and low-field mobility in Graphene Nano-Ribbons. Solid-State Electron. 54, 1015–1021 (2010)CrossRef Bresciani, M., Palestri, P., Esseni, D., Selmi, L.: Simple and efficient modeling of the E-k relationship and low-field mobility in Graphene Nano-Ribbons. Solid-State Electron. 54, 1015–1021 (2010)CrossRef
3.
Zurück zum Zitat Dugaev, V.K., Katsnelson, M.I.: Edge scattering of electrons in graphene: Boltzmann equation approach to the transport in graphene nanoribbons and nanodisks. Phys. Rev. B 88, 235432 (2013)CrossRef Dugaev, V.K., Katsnelson, M.I.: Edge scattering of electrons in graphene: Boltzmann equation approach to the transport in graphene nanoribbons and nanodisks. Phys. Rev. B 88, 235432 (2013)CrossRef
4.
Zurück zum Zitat Han, M.Y., Özyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)CrossRef Han, M.Y., Özyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)CrossRef
5.
Zurück zum Zitat Champlain, J.G.: A first principles theoretical examination of graphene-based field effect transistors. J. Appl. Phys. 109, 084515 (2011)CrossRef Champlain, J.G.: A first principles theoretical examination of graphene-based field effect transistors. J. Appl. Phys. 109, 084515 (2011)CrossRef
6.
Zurück zum Zitat Luca, L., Romano, V.: Comparing linear and nonlinear hydrodynamical models for charge transport in graphene based on the maximum entropy principle. Int. J. Non-Lin. Mech. 104, 39–58 (2018)CrossRef Luca, L., Romano, V.: Comparing linear and nonlinear hydrodynamical models for charge transport in graphene based on the maximum entropy principle. Int. J. Non-Lin. Mech. 104, 39–58 (2018)CrossRef
7.
Zurück zum Zitat Nastasi, G., Romano, V.: Discontinuous Galerkin approach for the simulation of charge transport in graphene. Ricerche mat. 70, 149–165 (2021)MathSciNetCrossRef Nastasi, G., Romano, V.: Discontinuous Galerkin approach for the simulation of charge transport in graphene. Ricerche mat. 70, 149–165 (2021)MathSciNetCrossRef
8.
Zurück zum Zitat Camiola, V.D., Nastasi, G.: Hydrodynamical model for charge transport in graphene nanoribbons. Confinement and edge scattering effects. J. Stat. Phys. 184, 23 (2021)MathSciNetCrossRef Camiola, V.D., Nastasi, G.: Hydrodynamical model for charge transport in graphene nanoribbons. Confinement and edge scattering effects. J. Stat. Phys. 184, 23 (2021)MathSciNetCrossRef
9.
Zurück zum Zitat Camiola, V.D., Nastasi, G.: Bipolar hydrodynamical model for charge transport in graphene nanoribbons. J. Comput. Theor. Transp. 51, 80–100 (2022)MathSciNetCrossRef Camiola, V.D., Nastasi, G.: Bipolar hydrodynamical model for charge transport in graphene nanoribbons. J. Comput. Theor. Transp. 51, 80–100 (2022)MathSciNetCrossRef
10.
Zurück zum Zitat Jacoboni, C.: Theory of Electron Transport in Semiconductors. Springer, Heidelberg (2013) Jacoboni, C.: Theory of Electron Transport in Semiconductors. Springer, Heidelberg (2013)
11.
Zurück zum Zitat Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef
12.
Zurück zum Zitat Nastasi, G., Romano, V.: An efficient GFET structure. IEEE Trans. Electron Devices 68, 4729–4734 (2021)CrossRef Nastasi, G., Romano, V.: An efficient GFET structure. IEEE Trans. Electron Devices 68, 4729–4734 (2021)CrossRef
13.
Zurück zum Zitat Ancona, M.G.: Electron transport in graphene from a diffusion-drift perspective. IEEE Trans. Electron Devices 57, 681–689 (2010)CrossRef Ancona, M.G.: Electron transport in graphene from a diffusion-drift perspective. IEEE Trans. Electron Devices 57, 681–689 (2010)CrossRef
14.
Zurück zum Zitat Camiola, V.D., Nastasi, G., Romano, V.: Direct simulation of charge transport in graphene nanoribbons. Comm. Comp. Phys. 31, 449–494 (2022)MathSciNetCrossRef Camiola, V.D., Nastasi, G., Romano, V.: Direct simulation of charge transport in graphene nanoribbons. Comm. Comp. Phys. 31, 449–494 (2022)MathSciNetCrossRef
15.
Zurück zum Zitat Majorana, A., Mascali, G., Romano, V.: Charge transport and mobility in monolayer graphene. J. Math. Industry 7, 4 (2016)MathSciNetCrossRef Majorana, A., Mascali, G., Romano, V.: Charge transport and mobility in monolayer graphene. J. Math. Industry 7, 4 (2016)MathSciNetCrossRef
16.
Zurück zum Zitat Nastasi, G., Romano, V.: Improved mobility models for charge transport in graphene. Commun. Appl. Ind. Math. 10, 41–52 (2019)MathSciNet Nastasi, G., Romano, V.: Improved mobility models for charge transport in graphene. Commun. Appl. Ind. Math. 10, 41–52 (2019)MathSciNet
17.
Zurück zum Zitat Nastasi, G., Romano, V.: A full coupled drift-diffusion-Poisson simulation of a GFET. Commun. Nonlinear Sci. Numer. Simul. 87, 105300 (2020)MathSciNetCrossRef Nastasi, G., Romano, V.: A full coupled drift-diffusion-Poisson simulation of a GFET. Commun. Nonlinear Sci. Numer. Simul. 87, 105300 (2020)MathSciNetCrossRef
18.
Zurück zum Zitat Nastasi, G., Romano, V.: Drift-diffusion models for the simulation of a graphene field effect transistor. J. Math. Ind. 12, 4 (2022)MathSciNetCrossRef Nastasi, G., Romano, V.: Drift-diffusion models for the simulation of a graphene field effect transistor. J. Math. Ind. 12, 4 (2022)MathSciNetCrossRef
Metadaten
Titel
Simulation of a GNR-FET
verfasst von
Giovanni Nastasi
Vittorio Romano
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-54517-7_4

Premium Partner