Skip to main content
Erschienen in: Tribology Letters 3/2018

01.09.2018 | Original Paper

Simulation of Sinuous Flow in Metal Cutting

verfasst von: A. S. Vandana, Narayan K. Sundaram

Erschienen in: Tribology Letters | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sinuous flow is a recently discovered mode of unsteady plastic flow in the cutting of metal involving large plastic strains, extensive material folding, and consequences ranging from paradoxically large cutting forces to poor surface finish. Here we use full-scale simulations to show how sinuous flow, and the concomitant redundant plastic deformation in cutting, are caused by microstructure-related inhomogeneity. The computations are carried out in a Lagrangian continuum mechanics framework using a simple, but effective, pseudograin model to represent metal as a polycrystalline aggregate. Our simulations successfully capture all experimentally observed aspects of sinuous flow in metals, including highly undulating, non-laminar streaklines of flow in the chip, folds, and mushroom-like features, and severely deformed high aspect ratio grains. The simulations also shed light on the mechanism of sinuous flow, and the effect of deformation geometry, explaining why it is suppressed at high rake angles. We find that folding and sinuous flow can occur even at low friction, for grain sizes as small as 25–50 microns, and at very low-cutting speeds. Our study clearly points at the critical importance of incorporating microstructure in cutting simulations of pure metals.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
‘Laminar’ is used here to describe flows in which the streaklines of flow are nearly parallel to each other, with no kinks or vortices. A streakline is the locus of all material points that passed through a given spatial location at some earlier time.
 
Literatur
1.
Zurück zum Zitat Shaw, M.C.: Metal Cutting Principles. Oxford University Press, Oxford (2005) Shaw, M.C.: Metal Cutting Principles. Oxford University Press, Oxford (2005)
2.
Zurück zum Zitat Challen, J., Oxley, P.: An explanation of the different regimes of friction and wear using asperity deformation models. Wear 53, 229–243 (1979)CrossRef Challen, J., Oxley, P.: An explanation of the different regimes of friction and wear using asperity deformation models. Wear 53, 229–243 (1979)CrossRef
3.
Zurück zum Zitat Ernst, H.: Machining of Metals. American Society for Metals, Ohio (1938) Ernst, H.: Machining of Metals. American Society for Metals, Ohio (1938)
4.
Zurück zum Zitat Merchant, M.E.: Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J. Appl. Phys. 16, 267–275 (1945)CrossRef Merchant, M.E.: Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J. Appl. Phys. 16, 267–275 (1945)CrossRef
5.
Zurück zum Zitat Field, M., Merchant, M.E.: Mechanics of formation of the discontinuous chip in metal cutting. Trans. Am. Soc. Mech. Eng. 71, 421 (1949) Field, M., Merchant, M.E.: Mechanics of formation of the discontinuous chip in metal cutting. Trans. Am. Soc. Mech. Eng. 71, 421 (1949)
6.
Zurück zum Zitat Nakayama, K.: The formation of saw-toothed chip in metal cutting. Proc. Int. Conf. on Prod. Eng. 1, 572–577 (1974) Nakayama, K.: The formation of saw-toothed chip in metal cutting. Proc. Int. Conf. on Prod. Eng. 1, 572–577 (1974)
7.
Zurück zum Zitat Viswanathan, K., Udupa, A., Yeung, H., Sagapuram, D., Mann, J.B., Saei, M., Chandrasekar, S.: On the stability of plastic flow in cutting of metals. CIRP Ann. Manuf. Technol. 66, 69–72 (2017)CrossRef Viswanathan, K., Udupa, A., Yeung, H., Sagapuram, D., Mann, J.B., Saei, M., Chandrasekar, S.: On the stability of plastic flow in cutting of metals. CIRP Ann. Manuf. Technol. 66, 69–72 (2017)CrossRef
8.
Zurück zum Zitat Usui, E., Gujral, A., Shaw, M.C.: An experimental study of the action of CCl4 in cutting and other processes involving plastic flow. Int. J. Mach. Tool D. R. 1, 187–197 (1961)CrossRef Usui, E., Gujral, A., Shaw, M.C.: An experimental study of the action of CCl4 in cutting and other processes involving plastic flow. Int. J. Mach. Tool D. R. 1, 187–197 (1961)CrossRef
9.
Zurück zum Zitat Williams, J.E., Smart, E.F., Milner, D.R.: Metallurgy of machining. Pt. 1. Basic considerations and the cutting of pure metals. Metallurgia 81, 3–10 (1970) Williams, J.E., Smart, E.F., Milner, D.R.: Metallurgy of machining. Pt. 1. Basic considerations and the cutting of pure metals. Metallurgia 81, 3–10 (1970)
10.
Zurück zum Zitat Cook, N., Finnie, I., Shaw, M.: Discontinuous chip formation. Trans. ASME 76, 153 (1954) Cook, N., Finnie, I., Shaw, M.: Discontinuous chip formation. Trans. ASME 76, 153 (1954)
11.
Zurück zum Zitat Komanduri, R., Brown, R.: On the mechanics of chip segmentation in machining. J. Eng. Ind. 103, 33–51 (1981)CrossRef Komanduri, R., Brown, R.: On the mechanics of chip segmentation in machining. J. Eng. Ind. 103, 33–51 (1981)CrossRef
12.
Zurück zum Zitat Semiatin, S., Rao, S.: Shear localization during metal cutting. Mat. Sci. Eng. 61, 185–192 (1983)CrossRef Semiatin, S., Rao, S.: Shear localization during metal cutting. Mat. Sci. Eng. 61, 185–192 (1983)CrossRef
13.
Zurück zum Zitat Molinari, A., Soldani, X., Miguélez, M.: Adiabatic shear banding and scaling laws in chip formation with application to cutting of Ti-6Al-4V. J. Mech. Phys. Solids 61, 2331–2359 (2013)CrossRef Molinari, A., Soldani, X., Miguélez, M.: Adiabatic shear banding and scaling laws in chip formation with application to cutting of Ti-6Al-4V. J. Mech. Phys. Solids 61, 2331–2359 (2013)CrossRef
14.
Zurück zum Zitat Yeung, H., Viswanathan, K., Compton, W.D., Chandrasekar, S.: Sinuous flow in metals. Proc. Nat. Acad. Sci. USA 112, 9828–9832 (2015)CrossRef Yeung, H., Viswanathan, K., Compton, W.D., Chandrasekar, S.: Sinuous flow in metals. Proc. Nat. Acad. Sci. USA 112, 9828–9832 (2015)CrossRef
15.
Zurück zum Zitat Trent, E.M., Wright, P.K.: Metal Cutting. Butterworth-Heinemann, Oxford (2000) Trent, E.M., Wright, P.K.: Metal Cutting. Butterworth-Heinemann, Oxford (2000)
16.
Zurück zum Zitat Udupa, A., Viswanathan, K., Ho, Y., Chandrasekar, S.: The cutting of metals via plastic buckling. Proc. R. Soc. A 473, 20160863 (2017)CrossRef Udupa, A., Viswanathan, K., Ho, Y., Chandrasekar, S.: The cutting of metals via plastic buckling. Proc. R. Soc. A 473, 20160863 (2017)CrossRef
17.
Zurück zum Zitat Ramalingam, S., Doyle, E., Turley, D.: On chip curl in orthogonal machining. J. Eng. Ind. 102, 177–183 (1980)CrossRef Ramalingam, S., Doyle, E., Turley, D.: On chip curl in orthogonal machining. J. Eng. Ind. 102, 177–183 (1980)CrossRef
18.
Zurück zum Zitat Komanduri, R., Von Turkovich B.F.: New observations on the mechanism of chip formation when machining titanium alloys. Wear 69, 179–188 (1981)CrossRef Komanduri, R., Von Turkovich B.F.: New observations on the mechanism of chip formation when machining titanium alloys. Wear 69, 179–188 (1981)CrossRef
19.
Zurück zum Zitat Sundaram, N.K., Guo, Y., Chandrasekar, S.: Mesoscale folding, instability, and disruption of laminar flow in metal surfaces. Phys. Rev. Lett. 109, 106001 (2012)CrossRef Sundaram, N.K., Guo, Y., Chandrasekar, S.: Mesoscale folding, instability, and disruption of laminar flow in metal surfaces. Phys. Rev. Lett. 109, 106001 (2012)CrossRef
20.
Zurück zum Zitat Vandana, A.S., Sundaram, N.K.: Interaction of a sliding wedge with a metallic substrate containing a single inhomogeneity. Trib. Lett. 65, 124 (2017)CrossRef Vandana, A.S., Sundaram, N.K.: Interaction of a sliding wedge with a metallic substrate containing a single inhomogeneity. Trib. Lett. 65, 124 (2017)CrossRef
21.
Zurück zum Zitat Sundaram, N.K., Mahato, A., Guo, Y., Viswanathan, K., Chandrasekar, S.: Folding in metal polycrystals: Microstructural origins and mechanics. Acta Mater. 140C, 67–78 (2017)CrossRef Sundaram, N.K., Mahato, A., Guo, Y., Viswanathan, K., Chandrasekar, S.: Folding in metal polycrystals: Microstructural origins and mechanics. Acta Mater. 140C, 67–78 (2017)CrossRef
22.
Zurück zum Zitat Strenkowski, J.S., Carroll, J.T.: A finite element model of orthogonal metal cutting. J. Eng. Ind. 107, 349–354 (1985)CrossRef Strenkowski, J.S., Carroll, J.T.: A finite element model of orthogonal metal cutting. J. Eng. Ind. 107, 349–354 (1985)CrossRef
23.
Zurück zum Zitat Marusich, T., Ortiz, M.: Modelling and simulation of high-speed machining. Int. J. Numer. Meth. Eng. 38, 3675–3694 (1995)CrossRef Marusich, T., Ortiz, M.: Modelling and simulation of high-speed machining. Int. J. Numer. Meth. Eng. 38, 3675–3694 (1995)CrossRef
24.
Zurück zum Zitat Chuzhoy, L., DeVor, R., Kapoor, S., Bammann, D.: Microstructure-level modeling of ductile iron machining. J. Manuf. Sci. Eng. 124, 162–169 (2002)CrossRef Chuzhoy, L., DeVor, R., Kapoor, S., Bammann, D.: Microstructure-level modeling of ductile iron machining. J. Manuf. Sci. Eng. 124, 162–169 (2002)CrossRef
25.
Zurück zum Zitat Chuzhoy, L., DeVor, R., Kapoor, S.: Machining simulation of ductile iron and its constituents, Part 2: Numerical simulation and experimental validation of machining. J. Manuf. Sci. Eng. 125, 192–201 (2003)CrossRef Chuzhoy, L., DeVor, R., Kapoor, S.: Machining simulation of ductile iron and its constituents, Part 2: Numerical simulation and experimental validation of machining. J. Manuf. Sci. Eng. 125, 192–201 (2003)CrossRef
26.
Zurück zum Zitat Simoneau, E., Ng, Elbestawi, M.: Surface defects during microcutting. Int. J. Mach. Tool. Manuf. 46, 1378–1387 (2006)CrossRef Simoneau, E., Ng, Elbestawi, M.: Surface defects during microcutting. Int. J. Mach. Tool. Manuf. 46, 1378–1387 (2006)CrossRef
27.
Zurück zum Zitat Ashby, M.: The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399–424 (1970)CrossRef Ashby, M.: The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399–424 (1970)CrossRef
28.
Zurück zum Zitat Harren, S., Asaro, R.: Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model. J. Mech. Phys. Solids 37, 191–232 (1989)CrossRef Harren, S., Asaro, R.: Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model. J. Mech. Phys. Solids 37, 191–232 (1989)CrossRef
29.
Zurück zum Zitat Huang, J.M., Black, J.T.: An evaluation of chip separation criteria for the FEM simulation of machining. J. Manuf. Sci. E 118, 545–554 (1996)CrossRef Huang, J.M., Black, J.T.: An evaluation of chip separation criteria for the FEM simulation of machining. J. Manuf. Sci. E 118, 545–554 (1996)CrossRef
30.
Zurück zum Zitat Subbiah, S., Melkote, S.N.: Evidence of ductile tearing ahead of the cutting tool and modeling the energy consumed in material separation in micro-cutting. J. Eng. Mater. Technol. 129, 321–331 (2007)CrossRef Subbiah, S., Melkote, S.N.: Evidence of ductile tearing ahead of the cutting tool and modeling the energy consumed in material separation in micro-cutting. J. Eng. Mater. Technol. 129, 321–331 (2007)CrossRef
31.
Zurück zum Zitat Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics 21, 541–547 (1983) Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics 21, 541–547 (1983)
32.
Zurück zum Zitat Armstrong, P.E., Hockett, J.E., Sherby, O.: Large strain multidirectional deformation of 1100 aluminum at 300 K. J. Mech. Phys. Solids 30, 37–58 (1982)CrossRef Armstrong, P.E., Hockett, J.E., Sherby, O.: Large strain multidirectional deformation of 1100 aluminum at 300 K. J. Mech. Phys. Solids 30, 37–58 (1982)CrossRef
33.
Zurück zum Zitat Lindholm, U.S.: Some experiments with the split Hopkinson pressure bar. J. Mech. Phys. Solids 12, 317–335 (1964)CrossRef Lindholm, U.S.: Some experiments with the split Hopkinson pressure bar. J. Mech. Phys. Solids 12, 317–335 (1964)CrossRef
34.
Zurück zum Zitat Vachhani, S.J., Kalidindi, S.R.: Grain-scale measurement of slip resistances in aluminum polycrystals using spherical nanoindentation. Acta Mater. 90, 27–36 (2015)CrossRef Vachhani, S.J., Kalidindi, S.R.: Grain-scale measurement of slip resistances in aluminum polycrystals using spherical nanoindentation. Acta Mater. 90, 27–36 (2015)CrossRef
35.
Zurück zum Zitat Lemaitre, J.: A continuous damage mechanics model for ductile fracture. J. Eng. Mater. 107, 83–89 (1985) Lemaitre, J.: A continuous damage mechanics model for ductile fracture. J. Eng. Mater. 107, 83–89 (1985)
36.
Zurück zum Zitat Atkins, A.G.: Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. Int. J. Mech. Sci. 45, 373–396 (2003)CrossRef Atkins, A.G.: Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. Int. J. Mech. Sci. 45, 373–396 (2003)CrossRef
37.
Zurück zum Zitat Dassault-Systemes: Abaqus Analysis User Manual. Dassault Systemes Simulia Corporation, Providence (2012) Dassault-Systemes: Abaqus Analysis User Manual. Dassault Systemes Simulia Corporation, Providence (2012)
38.
Zurück zum Zitat Chung, W.J., Cho, J.W., Belytschko, T.: On the dynamic effects of explicit FEM in sheet metal forming analysis. Eng. Comput. 15, 750–776 (1998)CrossRef Chung, W.J., Cho, J.W., Belytschko, T.: On the dynamic effects of explicit FEM in sheet metal forming analysis. Eng. Comput. 15, 750–776 (1998)CrossRef
39.
Zurück zum Zitat Melkote, S.N., Grzesik, W., Outeiro, J., Rech, J., Schulze, V., Attia, H., Arrazola, P.-J., MSaoubi, R., Saldana, C.: Advances in material and friction data for modelling of metal machining. CIRP Ann. 66, 731–754 (2017)CrossRef Melkote, S.N., Grzesik, W., Outeiro, J., Rech, J., Schulze, V., Attia, H., Arrazola, P.-J., MSaoubi, R., Saldana, C.: Advances in material and friction data for modelling of metal machining. CIRP Ann. 66, 731–754 (2017)CrossRef
40.
Zurück zum Zitat Okushima, K., Hitomi, K.: On the Cutting Mechanism for Soft Metals. Mem. Fac. Eng. 19, 135–166 (1957) Okushima, K., Hitomi, K.: On the Cutting Mechanism for Soft Metals. Mem. Fac. Eng. 19, 135–166 (1957)
41.
Zurück zum Zitat A.Molinari and Moufki, A.: The Merchant’s model of orthogonal cutting revisited: A new insight into the modeling of chip formation. Int. J. Mech. Sci. 50, 124–131 (2008)CrossRef A.Molinari and Moufki, A.: The Merchant’s model of orthogonal cutting revisited: A new insight into the modeling of chip formation. Int. J. Mech. Sci. 50, 124–131 (2008)CrossRef
42.
Zurück zum Zitat Childs, T.H.C.: Friction modelling in metal cutting. Wear 260, 310–318 (2006)CrossRef Childs, T.H.C.: Friction modelling in metal cutting. Wear 260, 310–318 (2006)CrossRef
43.
Zurück zum Zitat Hill, R.: The mechanics of machining: A new approach. J. Mech. Phys. Solids 3, 47–53 (1954)CrossRef Hill, R.: The mechanics of machining: A new approach. J. Mech. Phys. Solids 3, 47–53 (1954)CrossRef
44.
Zurück zum Zitat Dewhurst, P.: On the non-uniqueness of the machining process. Proc. R. Soc. A 360, 587–610 (1978)CrossRef Dewhurst, P.: On the non-uniqueness of the machining process. Proc. R. Soc. A 360, 587–610 (1978)CrossRef
45.
Zurück zum Zitat Hansen, N., Jensen, D.J.: Development of microstructure in FCC metals during cold work. Philos. Trans. R. Soc. A 357, 1447–1469 (1999)CrossRef Hansen, N., Jensen, D.J.: Development of microstructure in FCC metals during cold work. Philos. Trans. R. Soc. A 357, 1447–1469 (1999)CrossRef
46.
Zurück zum Zitat Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 58, 1152–1211 (2010)CrossRef Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 58, 1152–1211 (2010)CrossRef
47.
Zurück zum Zitat Madhavan, V., Chandrasekar, S., Farris, T.: Machining as a wedge indentation. J. Appl. Mech. 67, 128–139 (2000)CrossRef Madhavan, V., Chandrasekar, S., Farris, T.: Machining as a wedge indentation. J. Appl. Mech. 67, 128–139 (2000)CrossRef
48.
Zurück zum Zitat Beckmann, N., Romero, P., Linsler, D., Dienwiebel, M., Stolz, U., Moseler, M., Gumbsch, P.: Origins of folding instabilities on polycrystalline metal surfaces. Phys. Rev. Appl. 2, 064004 (2014)CrossRef Beckmann, N., Romero, P., Linsler, D., Dienwiebel, M., Stolz, U., Moseler, M., Gumbsch, P.: Origins of folding instabilities on polycrystalline metal surfaces. Phys. Rev. Appl. 2, 064004 (2014)CrossRef
49.
Zurück zum Zitat Li, Szlufarska, I.: How grain size controls friction and wear in nanocrystalline metals. Phys. Rev. B 92, 075418 (2015)CrossRef Li, Szlufarska, I.: How grain size controls friction and wear in nanocrystalline metals. Phys. Rev. B 92, 075418 (2015)CrossRef
50.
Zurück zum Zitat Guo, Y., M’Saoubi, R., Chandrasekar, S.: Control of deformation levels on machined surfaces. CIRP Ann. 60, 137–140 (2011)CrossRef Guo, Y., M’Saoubi, R., Chandrasekar, S.: Control of deformation levels on machined surfaces. CIRP Ann. 60, 137–140 (2011)CrossRef
51.
Zurück zum Zitat Komanduri, R., Schroeder, T., Hazra, J., Von Turkovich, B., Flom, D.: On the catastrophic shear instability in high-speed machining of an AISI 4340 steel. J. Eng. Ind. 104, 121–131 (1982)CrossRef Komanduri, R., Schroeder, T., Hazra, J., Von Turkovich, B., Flom, D.: On the catastrophic shear instability in high-speed machining of an AISI 4340 steel. J. Eng. Ind. 104, 121–131 (1982)CrossRef
52.
Zurück zum Zitat Davies, M.A., Burns, T.J., Evans, C.J.: On the dynamics of chip formation in machining hard metals. CIRP Ann. 46, 25–30 (1997)CrossRef Davies, M.A., Burns, T.J., Evans, C.J.: On the dynamics of chip formation in machining hard metals. CIRP Ann. 46, 25–30 (1997)CrossRef
53.
Zurück zum Zitat Mann, J., Guo, Y., Saldana, C., Compton, W., Chandrasekar, S.: Enhancing material removal processes using modulation-assisted machining. Tribol. Int. 44, 1225–1235 (2011)CrossRef Mann, J., Guo, Y., Saldana, C., Compton, W., Chandrasekar, S.: Enhancing material removal processes using modulation-assisted machining. Tribol. Int. 44, 1225–1235 (2011)CrossRef
Metadaten
Titel
Simulation of Sinuous Flow in Metal Cutting
verfasst von
A. S. Vandana
Narayan K. Sundaram
Publikationsdatum
01.09.2018
Verlag
Springer US
Erschienen in
Tribology Letters / Ausgabe 3/2018
Print ISSN: 1023-8883
Elektronische ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-018-1047-5

Weitere Artikel der Ausgabe 3/2018

Tribology Letters 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.