Skip to main content
Erschienen in: Thermal Engineering 7/2023

01.07.2023 | NUCLEAR POWER PLANTS

Simulation of the Coolant Hydrodynamics in the Outlet Section of the Fuel Assembly of the Cartridge Core of the RITM Type Reactor

verfasst von: S. M. Dmitriev, T. D. Demkina, A. A. Dobrov, D. V. Doronkov, D. S. Doronkova, A. N. Pronin, A. V. Ryazanov, D. N. Solntsev, A. E. Khrobostov

Erschienen in: Thermal Engineering | Ausgabe 7/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The results of experimental studies into the hydrodynamics of the coolant at the outlet section of the cassette fuel assembly (FA) of the RITM-type reactor of a low-power ground-based nuclear power plant are presented. The purpose of the work is to analyze the distribution of the axial velocity and flow rate of the coolant at the exit from the fuel bundle, in the modernized head of the fuel assembly, near the coolant extraction pipe and the openings of the upper base plate as well as to determine those areas of the fuel bundle from which the coolant flow is most likely to enter the pipe selection to the resistance thermometer. To achieve this goal, experiments were carried out on a research stand with an air working medium on a model of the outlet section of a fuel cassette, which includes an outlet fragment of a fuel bundle with spacer grids, models of an upgraded fuel cassette head, an upper support plate, and a coolant extraction pipe. When studying the flow of the coolant flow in the outlet part of the fuel cassette, the pneumometric method and the method of injection of a contrasting impurity were used. An area covering the entire cross section of the model was chosen as the area under study. The picture of the coolant flow is represented by cartograms of the distribution of its axial velocity and flow rate as well as cartograms of the distribution of the contrasting impurity in the cross section of the experimental model. The results of the experiments can serve as a basis for making engineering decisions when designing new cores of RITM type reactors. The obtained database of experimental data can be used for validation of modern CFD programs and one-dimensional thermal-hydraulic codes used to justify the thermal reliability of cores.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. L. Zverev, Yu. P. Fadeev, A. N. Pakhomov, V. Yu. Galitskikh, V. I. Polunichev, K. B. Veshnyakov, S. V. Kabin, and A. Yu. Turusov, “Reactor installations for nuclear icebreakers: Origination experience and current status,” At. Energy 129, 18–26 (2020).CrossRef D. L. Zverev, Yu. P. Fadeev, A. N. Pakhomov, V. Yu. Galitskikh, V. I. Polunichev, K. B. Veshnyakov, S. V. Kabin, and A. Yu. Turusov, “Reactor installations for nuclear icebreakers: Origination experience and current status,” At. Energy 129, 18–26 (2020).CrossRef
2.
Zurück zum Zitat D. L. Zverev, O. B. Samoilov, O. A. Morozov, A. A. Zakharychev, V. Yu. Silaev, P. B. Matyash, A. Yu. Vishnev, M. M. Kashka, and O. E. Darbinyan, “Active zones of existing nuclear icebreakers,” Sudostroenie, No. 1(848), 13–16 (2020). D. L. Zverev, O. B. Samoilov, O. A. Morozov, A. A. Zakharychev, V. Yu. Silaev, P. B. Matyash, A. Yu. Vishnev, M. M. Kashka, and O. E. Darbinyan, “Active zones of existing nuclear icebreakers,” Sudostroenie, No. 1(848), 13–16 (2020).
3.
Zurück zum Zitat V. M. Belyaev, M. A. Bol’shukhin, A. N. Pakhomov, A. M. Khizbullin, A. N. Lepekhin, V. I. Polunichev, K. B. Veshnyakov, A. N. Sokolov, and A. Yu. Turusov, “The world’s first floating NPP: Origination and direction of future development,” At. Energy 129, 27–34 (2020).CrossRef V. M. Belyaev, M. A. Bol’shukhin, A. N. Pakhomov, A. M. Khizbullin, A. N. Lepekhin, V. I. Polunichev, K. B. Veshnyakov, A. N. Sokolov, and A. Yu. Turusov, “The world’s first floating NPP: Origination and direction of future development,” At. Energy 129, 27–34 (2020).CrossRef
5.
Zurück zum Zitat A. A. Barinov, S. M. Dmitriev, A. E. Khrobostov, and O. B. Samoilov, “Methods of thermomechanical reliability validation of thermal water-moderated and water-cooled reactor cores,” At. Energy 120, 335–341 (2016).CrossRef A. A. Barinov, S. M. Dmitriev, A. E. Khrobostov, and O. B. Samoilov, “Methods of thermomechanical reliability validation of thermal water-moderated and water-cooled reactor cores,” At. Energy 120, 335–341 (2016).CrossRef
6.
Zurück zum Zitat S. M. Dmitriev, A. V. Varentsov, A. A. Dobrov, D. V. Doronkov, A. N. Pronin, V. D. Sorokin, and A. E. Khrobostov, “Computational and experimental investigations of the coolant flow in the cassette fissile core of a KLT-40S reactor,” J. Eng. Phys. Thermophys. 90, 941–950 (2017).CrossRef S. M. Dmitriev, A. V. Varentsov, A. A. Dobrov, D. V. Doronkov, A. N. Pronin, V. D. Sorokin, and A. E. Khrobostov, “Computational and experimental investigations of the coolant flow in the cassette fissile core of a KLT-40S reactor,” J. Eng. Phys. Thermophys. 90, 941–950 (2017).CrossRef
7.
8.
Zurück zum Zitat A. A. Gukhman, Introduction to the Theory of Similarity, 2nd ed. (Vysshaya Shkola, Moscow, 1973) [in Russian].MATH A. A. Gukhman, Introduction to the Theory of Similarity, 2nd ed. (Vysshaya Shkola, Moscow, 1973) [in Russian].MATH
9.
Zurück zum Zitat S. M. Dmitriev, A. A. Dobrov, M. A. Legchanov, and A. E. Khrobostov, “Application of multihole pressure probe for research of coolant velocity profile in nuclear reactor fuel assemblies,” Prib. Metody Izmer. 6, 188–195 (2015). S. M. Dmitriev, A. A. Dobrov, M. A. Legchanov, and A. E. Khrobostov, “Application of multihole pressure probe for research of coolant velocity profile in nuclear reactor fuel assemblies,” Prib. Metody Izmer. 6, 188–195 (2015).
Metadaten
Titel
Simulation of the Coolant Hydrodynamics in the Outlet Section of the Fuel Assembly of the Cartridge Core of the RITM Type Reactor
verfasst von
S. M. Dmitriev
T. D. Demkina
A. A. Dobrov
D. V. Doronkov
D. S. Doronkova
A. N. Pronin
A. V. Ryazanov
D. N. Solntsev
A. E. Khrobostov
Publikationsdatum
01.07.2023
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 7/2023
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601523070017

Weitere Artikel der Ausgabe 7/2023

Thermal Engineering 7/2023 Zur Ausgabe

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS, AND THEIR AUXILIARY EQUIPMENT

Development of Unshrouded Blade for Stage Two of GTE-65.1 Turbine

HEAT AND MASS TRANSFER, PROPERTIES OF WORKING BODIES AND MATERIALS

Simulation of Halon Condensation Processes in Vertical Pipes by the VOF Method

    Premium Partner