Skip to main content
Erschienen in: Physics of Metals and Metallography 8/2018

01.08.2018 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Simulation of the Evolution of Carbonitride Particles of Complex Composition upon Hot Deformation of a Low-Alloyed Steel

verfasst von: I. I. Gorbachev, A. Yu. Pasynkov, V. V. Popov

Erschienen in: Physics of Metals and Metallography | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A model has been proposed for describing the evolution of several ensembles of carbonitride particles with complex compositions in low-alloyed steel upon hot deformation in the temperature range of stable austenite. In the model the mutual influence of changes upon deformation in structural parameters such as dislocation density and average austenite-grain size (with allowance for relaxation processes and precipitation processes) and the evolution of carbonitride phases have been considered. Likewise, the model takes into account the polydispersity of ensembles of precipitates. The results of calculations have been compared with the experimental data obtained in steel microalloyed with vanadium, niobium, and titanium

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. M. Sellars, “Modelling microstructural development during hot rolling,” Mater. Sci. Technol. 6, 1072–1081 (1990).CrossRef C. M. Sellars, “Modelling microstructural development during hot rolling,” Mater. Sci. Technol. 6, 1072–1081 (1990).CrossRef
2.
Zurück zum Zitat L. Quan, L. Zheng-dong, T. Guang-bo, T. Zhi-ling, and F. Siciliano, “Mathematical model of microstructure evolution of X60 line pipe steel during CSP hot rolling,” J. Iron Steel Res. Int. 17, 70–78 (2010). L. Quan, L. Zheng-dong, T. Guang-bo, T. Zhi-ling, and F. Siciliano, “Mathematical model of microstructure evolution of X60 line pipe steel during CSP hot rolling,” J. Iron Steel Res. Int. 17, 70–78 (2010).
3.
Zurück zum Zitat R. Sandstrom and R. Lagneborg, “A model for hot working occurring by recrystallization,” Acta Metall. 23, 387–398 (1975).CrossRef R. Sandstrom and R. Lagneborg, “A model for hot working occurring by recrystallization,” Acta Metall. 23, 387–398 (1975).CrossRef
4.
Zurück zum Zitat Y. Estrin, “Dislocation theory based constitutive modelling: Foundations and applications,” J. Mater. Process. Technol. 80-81, 33–39 (1998).CrossRef Y. Estrin, “Dislocation theory based constitutive modelling: Foundations and applications,” J. Mater. Process. Technol. 80-81, 33–39 (1998).CrossRef
5.
Zurück zum Zitat C. Roucoules, M. Pietrzyk, and P. D. Hodgson, “Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable model,” Mater. Sci. Eng., A 339, 1–9 (2003).CrossRef C. Roucoules, M. Pietrzyk, and P. D. Hodgson, “Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable model,” Mater. Sci. Eng., A 339, 1–9 (2003).CrossRef
6.
Zurück zum Zitat J. I. Choe, “Constitutive relations for determining the critical conditions for dynamic recrystallization behavior,” Phys. Met. Metallogr. 118, 378–384 (2017). J. I. Choe, “Constitutive relations for determining the critical conditions for dynamic recrystallization behavior,” Phys. Met. Metallogr. 118, 378–384 (2017).
7.
Zurück zum Zitat M. Pietrzyk, “Through-process modelling of microstructure evolution in hot forming of steels,” J. Mater. Process. Technol. 125–126, 53–62 (2002).CrossRef M. Pietrzyk, “Through-process modelling of microstructure evolution in hot forming of steels,” J. Mater. Process. Technol. 125–126, 53–62 (2002).CrossRef
8.
Zurück zum Zitat V. V. Popov, “Simulation of the evolution of precipitates in dilute alloys,” Phys. Met. Metallogr. 93, 303 (2002). V. V. Popov, “Simulation of the evolution of precipitates in dilute alloys,” Phys. Met. Metallogr. 93, 303 (2002).
9.
Zurück zum Zitat V. V. Popov, “Simulation of dissolution and coarsening of MnS precipitates in Fe–Si,” Phil. Mag. A 82, 17–27 (2002).CrossRef V. V. Popov, “Simulation of dissolution and coarsening of MnS precipitates in Fe–Si,” Phil. Mag. A 82, 17–27 (2002).CrossRef
10.
Zurück zum Zitat V. V. Popov and I. I. Gorbachev, “Simulation of the evolution of precipitates in multicomponent alloys,” Phys. Met. Metallogr. 95, 417–426 (2003). V. V. Popov and I. I. Gorbachev, “Simulation of the evolution of precipitates in multicomponent alloys,” Phys. Met. Metallogr. 95, 417–426 (2003).
11.
Zurück zum Zitat V. V. Popov and I. I. Gorbachev, “Numerical simulation of carbide and nitride precipitate evolution in steels,” Materialwiss. Werkstofftech. 36, 477–481 (2005).CrossRef V. V. Popov and I. I. Gorbachev, “Numerical simulation of carbide and nitride precipitate evolution in steels,” Materialwiss. Werkstofftech. 36, 477–481 (2005).CrossRef
12.
Zurück zum Zitat V. V. Popov, I. I. Gorbachev, and J. A. Alyabieva, “Simulation of VC precipitate evolution in steels with consideration for the formation of new nuclei,” Philos. Mag. 85, 2449–2467 (2005).CrossRef V. V. Popov, I. I. Gorbachev, and J. A. Alyabieva, “Simulation of VC precipitate evolution in steels with consideration for the formation of new nuclei,” Philos. Mag. 85, 2449–2467 (2005).CrossRef
13.
Zurück zum Zitat I. I. Gorbachev, V. V. Popov, and E. N. Akimova, “Computer simulation of the diffusion interaction between carbonitride precipitates and austenitic matrix with allowance for the possibility of variation of their composition,” Phys. Met. Metallogr. 102, 18–28 (2006).CrossRef I. I. Gorbachev, V. V. Popov, and E. N. Akimova, “Computer simulation of the diffusion interaction between carbonitride precipitates and austenitic matrix with allowance for the possibility of variation of their composition,” Phys. Met. Metallogr. 102, 18–28 (2006).CrossRef
14.
Zurück zum Zitat I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Simulation of evolution of precipitates of two carbonitride phases in Nb- and Ti-containing steels during isothermal annealing,” Phys. Met. Metallogr. 114, 741–751 (2013).CrossRef I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Simulation of evolution of precipitates of two carbonitride phases in Nb- and Ti-containing steels during isothermal annealing,” Phys. Met. Metallogr. 114, 741–751 (2013).CrossRef
15.
Zurück zum Zitat I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Simulation of precipitate ensemble evolution in steels with V and Nb,” Phys. Met. Metallogr. 116, 356–366 (2015).CrossRef I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Simulation of precipitate ensemble evolution in steels with V and Nb,” Phys. Met. Metallogr. 116, 356–366 (2015).CrossRef
16.
Zurück zum Zitat V. V. Popov, I. I. Gorbachev, and A. Yu. Pasynkov, “Simulation of precipitates evolution in multiphase multicomponent systems with consideration of nucleation,” Philos. Mag. 96, 3632–3653 (2016).CrossRef V. V. Popov, I. I. Gorbachev, and A. Yu. Pasynkov, “Simulation of precipitates evolution in multiphase multicomponent systems with consideration of nucleation,” Philos. Mag. 96, 3632–3653 (2016).CrossRef
17.
Zurück zum Zitat I. I. Gorbachev, A. Yu. Pasynkov, and V. V. Popov, “Simulation of the effect of hot deformation on the size of austenite grain of low-alloy steels with carbonitride hardening,” Phys. Met. Metallogr. 119, 781–790 (2018). I. I. Gorbachev, A. Yu. Pasynkov, and V. V. Popov, “Simulation of the effect of hot deformation on the size of austenite grain of low-alloy steels with carbonitride hardening,” Phys. Met. Metallogr. 119, 781–790 (2018).
18.
Zurück zum Zitat A. Timoshenkov, P. Warczok, M. Albu, J. Klarner, E. Kozeschnik, R. Bureau, and C. Sommitsch, “Modelling the dynamic recrystallization in C–Mn micro-alloyed steel during thermo-mechanical treatment using cellular automata,” Comput. Mater. Sci. 24, 85–94 (2014).CrossRef A. Timoshenkov, P. Warczok, M. Albu, J. Klarner, E. Kozeschnik, R. Bureau, and C. Sommitsch, “Modelling the dynamic recrystallization in C–Mn micro-alloyed steel during thermo-mechanical treatment using cellular automata,” Comput. Mater. Sci. 24, 85–94 (2014).CrossRef
19.
Zurück zum Zitat J. Svoboda, F. D. Fischer, P. Fratzl, and E. Kozeschnik, “Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: Theory,” Mater. Sci. Eng., A. 385, 166–174 (2004). J. Svoboda, F. D. Fischer, P. Fratzl, and E. Kozeschnik, “Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: Theory,” Mater. Sci. Eng., A. 385, 166–174 (2004).
20.
Zurück zum Zitat E. Kozeschnik, J. Svoboda, and F. D. Fischer, “Modified evolution equations for the precipitation kinetics of complex phases in multi-component systems,” CALPHAD 28, 379–382 (2004).CrossRef E. Kozeschnik, J. Svoboda, and F. D. Fischer, “Modified evolution equations for the precipitation kinetics of complex phases in multi-component systems,” CALPHAD 28, 379–382 (2004).CrossRef
21.
Zurück zum Zitat Y. Estrin and H. Mecking, “A unified phenomenological description of work hardening and creep based on one-parameter models,” Acta Metall. 32, 57–70 (1984).CrossRef Y. Estrin and H. Mecking, “A unified phenomenological description of work hardening and creep based on one-parameter models,” Acta Metall. 32, 57–70 (1984).CrossRef
22.
Zurück zum Zitat J. G. Lenard, M. Pietrzyk, and L. Cser, Mathematical and Physical Simulation of the Properties of Hot Rolled Products (Elsevier, Amsterdam, 1999). J. G. Lenard, M. Pietrzyk, and L. Cser, Mathematical and Physical Simulation of the Properties of Hot Rolled Products (Elsevier, Amsterdam, 1999).
23.
Zurück zum Zitat P. D. Hodgson and D. S. Collinson, The calculation of hot strength in plate and strip rolling of niobium microalloyed steels, in Proc. Symp. Matematical Modeling of Hot Rolling of Steel, Ed. by S. Yue (CIM, Hamilton,Ontario, Canada, 1990). P. D. Hodgson and D. S. Collinson, The calculation of hot strength in plate and strip rolling of niobium microalloyed steels, in Proc. Symp. Matematical Modeling of Hot Rolling of Steel, Ed. by S. Yue (CIM, Hamilton,Ontario, Canada, 1990).
24.
Zurück zum Zitat A. Laasraoui and J. J. Jones, “Prediction of steel flow stresses at high temperatures and strain rates,” Metall. Trans. A 22, 151–160 (1991).CrossRef A. Laasraoui and J. J. Jones, “Prediction of steel flow stresses at high temperatures and strain rates,” Metall. Trans. A 22, 151–160 (1991).CrossRef
25.
Zurück zum Zitat S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys (MISIS, Moscow, 2005) [in Russian]. S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys (MISIS, Moscow, 2005) [in Russian].
26.
Zurück zum Zitat W. J. Liu and J. J. Jonas, “Characterization of critical nucleus/matrix interface: application to Cu–Co alloys and micro alloyed austenite,” Mater. Sci. Technol. 5, 8–12 (1989).CrossRef W. J. Liu and J. J. Jonas, “Characterization of critical nucleus/matrix interface: application to Cu–Co alloys and micro alloyed austenite,” Mater. Sci. Technol. 5, 8–12 (1989).CrossRef
27.
Zurück zum Zitat W. J. Liu and J. J. Jonas, “Nucleation kinetics of Ti carbonitride in microalloyed austenite,” Metall. Trans. A 20, 689–697 (1989).CrossRef W. J. Liu and J. J. Jonas, “Nucleation kinetics of Ti carbonitride in microalloyed austenite,” Metall. Trans. A 20, 689–697 (1989).CrossRef
28.
Zurück zum Zitat M. I. Gol’dshtein, V. V. Popov, A. E. Aksel’rod, and L. P. Zhitova, “Effect of the proportion and size of dispersed carbonitrides on the grain size,” Metalloved. Term. Obrab. Met., No. 8, 2–7 (1989). M. I. Gol’dshtein, V. V. Popov, A. E. Aksel’rod, and L. P. Zhitova, “Effect of the proportion and size of dispersed carbonitrides on the grain size,” Metalloved. Term. Obrab. Met., No. 8, 2–7 (1989).
29.
Zurück zum Zitat W. Roberts and B. Ahlblom, “A nucleation criterion for dynamic recrystallization during hot working,” Acta Metall. 26, 801–813 (1978).CrossRef W. Roberts and B. Ahlblom, “A nucleation criterion for dynamic recrystallization during hot working,” Acta Metall. 26, 801–813 (1978).CrossRef
30.
Zurück zum Zitat I. I. Gorbachev, A. Yu. Pasynkov, and V. V. Popov, “Prediction of the austenite-grain size of microalloyed steels based on the simulation of the evolution of carbonitride precipitates,” Phys. Met. Metallogr. 116, 1127–1134 (2015).CrossRef I. I. Gorbachev, A. Yu. Pasynkov, and V. V. Popov, “Prediction of the austenite-grain size of microalloyed steels based on the simulation of the evolution of carbonitride precipitates,” Phys. Met. Metallogr. 116, 1127–1134 (2015).CrossRef
31.
Zurück zum Zitat P. D. Hodgson and R. K. Gibbs, “A Mathematical model to predict the mechanical properties of hot rolled C–Mn and microalloyed steels,” ISIJ Int. 32, 1329–1338 (1992).CrossRef P. D. Hodgson and R. K. Gibbs, “A Mathematical model to predict the mechanical properties of hot rolled C–Mn and microalloyed steels,” ISIJ Int. 32, 1329–1338 (1992).CrossRef
32.
Zurück zum Zitat W. J. Liu and J. J. Jonas, “Nucleation kinetics of Ti carbonitride in microalloyed austenite,” Metall. Mater. Trans. A 20, 689–697 (1989).CrossRef W. J. Liu and J. J. Jonas, “Nucleation kinetics of Ti carbonitride in microalloyed austenite,” Metall. Mater. Trans. A 20, 689–697 (1989).CrossRef
33.
Zurück zum Zitat E. J. Pavlina, C. J. Van Tyne, and J. G. Speer, “Effects of combined silicon and molybdenum alloying on the size and evolution of microalloy precipitates in HSLA steels containing niobium and titanium,” Mater. Charact. 105, 35-46 (2015).CrossRef E. J. Pavlina, C. J. Van Tyne, and J. G. Speer, “Effects of combined silicon and molybdenum alloying on the size and evolution of microalloy precipitates in HSLA steels containing niobium and titanium,” Mater. Charact. 105, 35-46 (2015).CrossRef
34.
Zurück zum Zitat Certificate of the state registration of the program for the EVM 2011618874 / IMP Equilibriun. – 15.11.2011. Certificate of the state registration of the program for the EVM 2011618874 / IMP Equilibriun. – 15.11.2011.
35.
Zurück zum Zitat V. V. Popov and I. I. Gorbachev, “Analysis of solubility of carbides, nitrides, and carbonitrides is steels using methods of computer thermodynamics: I. Description of thermodynamic properties. Computation procedure,” Phys. Met. Metallogr. 98, 344–354 (2004). V. V. Popov and I. I. Gorbachev, “Analysis of solubility of carbides, nitrides, and carbonitrides is steels using methods of computer thermodynamics: I. Description of thermodynamic properties. Computation procedure,” Phys. Met. Metallogr. 98, 344–354 (2004).
36.
Zurück zum Zitat I. I. Gorbachev and V. V. Popov, “Analysis of the solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: IV. Solubility of carbides, nitrides, and carbonitrides in the Fe–Nb–C, Fe–Nb–N, and Fe–Nb–C–N systems,” Phys. Met. Metallogr. 110, 52–61 (2010).CrossRef I. I. Gorbachev and V. V. Popov, “Analysis of the solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: IV. Solubility of carbides, nitrides, and carbonitrides in the Fe–Nb–C, Fe–Nb–N, and Fe–Nb–C–N systems,” Phys. Met. Metallogr. 110, 52–61 (2010).CrossRef
37.
Zurück zum Zitat I. I. Gorbachev, V. V. Popov and A. Yu. Pasynkov, “Calculations of the influence of alloying elements (Al, Cr, Mn, Ni, Si) on the solubility of carbonitrides in low-carbon low-alloy steels,” Phys. Met. Metallogr. 117, 1226–1236 (2016).CrossRef I. I. Gorbachev, V. V. Popov and A. Yu. Pasynkov, “Calculations of the influence of alloying elements (Al, Cr, Mn, Ni, Si) on the solubility of carbonitrides in low-carbon low-alloy steels,” Phys. Met. Metallogr. 117, 1226–1236 (2016).CrossRef
38.
Zurück zum Zitat Certificate of the state registration of the program for the EVM 2015663347 / Evo PCE+. – 27.10.2015. Certificate of the state registration of the program for the EVM 2015663347 / Evo PCE+. – 27.10.2015.
Metadaten
Titel
Simulation of the Evolution of Carbonitride Particles of Complex Composition upon Hot Deformation of a Low-Alloyed Steel
verfasst von
I. I. Gorbachev
A. Yu. Pasynkov
V. V. Popov
Publikationsdatum
01.08.2018
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 8/2018
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X18080021

Weitere Artikel der Ausgabe 8/2018

Physics of Metals and Metallography 8/2018 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Scandium-Based Hexagonal-Closed Packed Multi-Component Alloys