Skip to main content
Erschienen in: Mathematical Models and Computer Simulations 2/2019

01.03.2019

Simulation of Turbulent Mixing by the CABARET Algorithm for the Case of a Richtmyer–Meshkov Instability

verfasst von: A. V. Danilin, A. V. Solovjev

Erschienen in: Mathematical Models and Computer Simulations | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The CABARET algorithm constructed earlier by the authors for calculating the motion of multicomponent gas mixtures is used for the numerical simulation of a physical instability evolving when a shock wave passes through an initially quiescent interface of gaseous media with different physical properties, which is followed by the turbulization of the flow in the planar geometry. The following two problems are simulated: the passage of a shock wave through a rectangular subdomain filled with a heavy gas and the development of a Richtmyer–Meshkov instability during the passage of a shock wave through a sinusoidal media interface. The obtained evolution of the width of the mixing zone is compared with the experimental, theoretical, and numerical results of other authors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids,” Commun. Pure Appl. Math. 13, 297–319 (1960).MathSciNetCrossRef R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids,” Commun. Pure Appl. Math. 13, 297–319 (1960).MathSciNetCrossRef
2.
Zurück zum Zitat E. E. Meshkov, “Instability of the interface of two gases accelerated by a shock wave,” Sov. Fluid Dyn., No. 4, 101–104 (1969). E. E. Meshkov, “Instability of the interface of two gases accelerated by a shock wave,” Sov. Fluid Dyn., No. 4, 101–104 (1969).
3.
Zurück zum Zitat K. A. Meyer and P. J. Blewett, “Numerical investigation of stability of a shock-accelerated interface between two fluids,” Phys. Fluids 15, 753–759 (1972).CrossRef K. A. Meyer and P. J. Blewett, “Numerical investigation of stability of a shock-accelerated interface between two fluids,” Phys. Fluids 15, 753–759 (1972).CrossRef
4.
Zurück zum Zitat Q. Zhang and S. I. Sohn, “Nonlinear theory of unstable fluid mixing driven by shock wave,” Phys. Fluids 9, 1106–1124 (1997).MathSciNetCrossRefMATH Q. Zhang and S. I. Sohn, “Nonlinear theory of unstable fluid mixing driven by shock wave,” Phys. Fluids 9, 1106–1124 (1997).MathSciNetCrossRefMATH
5.
Zurück zum Zitat O. Sadot, L. Erez, U. Alon, D. Oren, and L. A. Levin, “Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer-Meshkov instability,” Phys. Rev. Lett. 80, 1654–1657 (1998).CrossRef O. Sadot, L. Erez, U. Alon, D. Oren, and L. A. Levin, “Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer-Meshkov instability,” Phys. Rev. Lett. 80, 1654–1657 (1998).CrossRef
6.
Zurück zum Zitat G. C. Orlicz, S. Balasubramanian, and K. P. Prestridge, “Incident shock Mach number effects on Richtmyer-Meshkov mixing in a heavy gas layer,” Phys. Fluids, No. 25, 114101 (2013).CrossRef G. C. Orlicz, S. Balasubramanian, and K. P. Prestridge, “Incident shock Mach number effects on Richtmyer-Meshkov mixing in a heavy gas layer,” Phys. Fluids, No. 25, 114101 (2013).CrossRef
7.
Zurück zum Zitat B. D. Collins and J. W. Jacobs, “PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF6 interface,” J. Fluid Mech. 464, 113–136 (2002).CrossRefMATH B. D. Collins and J. W. Jacobs, “PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF6 interface,” J. Fluid Mech. 464, 113–136 (2002).CrossRefMATH
8.
Zurück zum Zitat B. E. Motl, “Experimental parameter study of the Richtmyer-Meshkov instability,” PhD Thesis (Univ. Wisconsin, Madison, 2008). B. E. Motl, “Experimental parameter study of the Richtmyer-Meshkov instability,” PhD Thesis (Univ. Wisconsin, Madison, 2008).
9.
Zurück zum Zitat E. Leinov, G. Malamud, et al., “Experimental and numerical investigation of the Richtmyer-Meshkov instability under re-shock conditions,” J. Fluid Mech. 626, 449–475 (2009).CrossRefMATH E. Leinov, G. Malamud, et al., “Experimental and numerical investigation of the Richtmyer-Meshkov instability under re-shock conditions,” J. Fluid Mech. 626, 449–475 (2009).CrossRefMATH
10.
Zurück zum Zitat J.-F. Haas and B. Sturtevant, “Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities,” J. Fluid Mech. 181, 41–76 (1987).CrossRef J.-F. Haas and B. Sturtevant, “Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities,” J. Fluid Mech. 181, 41–76 (1987).CrossRef
11.
Zurück zum Zitat D. A. Holder et al., “Shock-tube experiments on Richtmyer-Meshkov instability growth using an enlarged double bump perturbation,” Laser Part. Beams 21, 411–418 (2003).CrossRef D. A. Holder et al., “Shock-tube experiments on Richtmyer-Meshkov instability growth using an enlarged double bump perturbation,” Laser Part. Beams 21, 411–418 (2003).CrossRef
12.
Zurück zum Zitat R. Abgrall, “How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach,” J. Comput. Phys. 125, 150–160 (1996).MathSciNetCrossRefMATH R. Abgrall, “How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach,” J. Comput. Phys. 125, 150–160 (1996).MathSciNetCrossRefMATH
13.
Zurück zum Zitat M. Latini, O. Schiling, and W. S. Don, “High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability: comparison to experimental data and to amplitude growth model predictions,” Phys. Fluids 19, 024104 (2007).CrossRefMATH M. Latini, O. Schiling, and W. S. Don, “High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability: comparison to experimental data and to amplitude growth model predictions,” Phys. Fluids 19, 024104 (2007).CrossRefMATH
14.
Zurück zum Zitat M. Latini, O. Schiling, and W. S. Don, “Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability,” J. Comput. Phys. 221, 805–36 (2007).MathSciNetCrossRefMATH M. Latini, O. Schiling, and W. S. Don, “Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability,” J. Comput. Phys. 221, 805–36 (2007).MathSciNetCrossRefMATH
15.
Zurück zum Zitat V. F. Tishkin, V. V. Nikishin, I. V. Panov, and A. P. Favorskii, “Finite difference schemes of three-dimensional gas dynamics for the study of Richtmyer–Meshkov instability,” Mat. Model. 7 (5), 15–25 (1995). V. F. Tishkin, V. V. Nikishin, I. V. Panov, and A. P. Favorskii, “Finite difference schemes of three-dimensional gas dynamics for the study of Richtmyer–Meshkov instability,” Mat. Model. 7 (5), 15–25 (1995).
16.
Zurück zum Zitat P. Movahed and E. Johnsen, “Numerical simulations of the Richtmyer-Meshkov instability with reshock,” in Proceedings of the 20th AIAA Computational Fluid Dynamics Conference, Honolulu, 2011. P. Movahed and E. Johnsen, “Numerical simulations of the Richtmyer-Meshkov instability with reshock,” in Proceedings of the 20th AIAA Computational Fluid Dynamics Conference, Honolulu, 2011.
17.
Zurück zum Zitat P. Movahed and E. Johnsen, “A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer-Meshkov instability,” J. Comput. Phys. 239, 166–186 (2013).MathSciNetCrossRef P. Movahed and E. Johnsen, “A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer-Meshkov instability,” J. Comput. Phys. 239, 166–186 (2013).MathSciNetCrossRef
18.
Zurück zum Zitat V. K. Tritschler, X. Y. Hu, S. Hickel, and N. A. Adams, “Numerical simulation of a Richtmyer-Meshkov instability with an adaptive central-upwind sixth-order WENO scheme,” Phys. Scr. 155, 014016 (2013).CrossRef V. K. Tritschler, X. Y. Hu, S. Hickel, and N. A. Adams, “Numerical simulation of a Richtmyer-Meshkov instability with an adaptive central-upwind sixth-order WENO scheme,” Phys. Scr. 155, 014016 (2013).CrossRef
19.
Zurück zum Zitat S. Ukai, K. Balakrishnan, and S. Menon, “Growth rate predictions of single- and multi-mode Richtmyer-Meshkov instability with reshock,” Shock Waves 21, 533–546 (2011).CrossRef S. Ukai, K. Balakrishnan, and S. Menon, “Growth rate predictions of single- and multi-mode Richtmyer-Meshkov instability with reshock,” Shock Waves 21, 533–546 (2011).CrossRef
20.
Zurück zum Zitat A. Yosef-Hai, O. Sadot, et al., “Late-time growth of the Richtmyer-Meshkov instability for different Atwood numbers and different dimensionalities,” Laser Part. Beams 21, 363–368 (2003).CrossRef A. Yosef-Hai, O. Sadot, et al., “Late-time growth of the Richtmyer-Meshkov instability for different Atwood numbers and different dimensionalities,” Laser Part. Beams 21, 363–368 (2003).CrossRef
21.
Zurück zum Zitat J. T. Morán-López, “Multicomponent Reynolds-averaged Navier-Stokes modeling of reshocked Richtmyer-Meshkov instability-induced turbulent mixing using the weighted essentially nonoscillatory method,” PhD Thesis (Univ. of Michigan, Ann Arbor, 2013). J. T. Morán-López, “Multicomponent Reynolds-averaged Navier-Stokes modeling of reshocked Richtmyer-Meshkov instability-induced turbulent mixing using the weighted essentially nonoscillatory method,” PhD Thesis (Univ. of Michigan, Ann Arbor, 2013).
22.
Zurück zum Zitat K. R. Bates, N. Nikiforakis, and D. Holder, “Richtmyer-Meshkov instability induced by the interaction of a shock wave with a rectangular block of SF6,” Phys. Fluids 19, 036101 (2007).CrossRefMATH K. R. Bates, N. Nikiforakis, and D. Holder, “Richtmyer-Meshkov instability induced by the interaction of a shock wave with a rectangular block of SF6,” Phys. Fluids 19, 036101 (2007).CrossRefMATH
23.
Zurück zum Zitat R. S. Lagumbay, “Modeling and simulation of multiphase/multicomponent flows,” PhD Thesis (Univ. of Colorado, Boulder, 2006). R. S. Lagumbay, “Modeling and simulation of multiphase/multicomponent flows,” PhD Thesis (Univ. of Colorado, Boulder, 2006).
24.
Zurück zum Zitat V. M. Goloviznin and A. A. Samarskii, “Finite difference approximation of convective transport equation with space splitting time derivative,” Mat. Model. 10 (1), 86–100 (1998).MathSciNetMATH V. M. Goloviznin and A. A. Samarskii, “Finite difference approximation of convective transport equation with space splitting time derivative,” Mat. Model. 10 (1), 86–100 (1998).MathSciNetMATH
25.
Zurück zum Zitat V. M. Goloviznin and A. A. Samarskii, “Some characteristics of finite difference scheme cabaret,” Mat. Model. 10 (1), 101–116 (1998).MathSciNetMATH V. M. Goloviznin and A. A. Samarskii, “Some characteristics of finite difference scheme cabaret,” Mat. Model. 10 (1), 101–116 (1998).MathSciNetMATH
26.
Zurück zum Zitat V. M. Goloviznin and S. A. Karabasov, “Nonlinear correction of Cabaret scheme,” Mat. Model. 10 (12), 107–123 (1998).MathSciNet V. M. Goloviznin and S. A. Karabasov, “Nonlinear correction of Cabaret scheme,” Mat. Model. 10 (12), 107–123 (1998).MathSciNet
27.
Zurück zum Zitat V. M. Goloviznin, S. A. Karabasov, and I. M. Kobrinskii, “Balance-characteristic schemes with separated conservative and flux variables,” Mat. Model. 15 (9), 29–48 (2003).MathSciNetMATH V. M. Goloviznin, S. A. Karabasov, and I. M. Kobrinskii, “Balance-characteristic schemes with separated conservative and flux variables,” Mat. Model. 15 (9), 29–48 (2003).MathSciNetMATH
28.
Zurück zum Zitat V. M. Goloviznin, “Balanced characteristic method for 1D systems of hyperbolic conservation laws in eulerian representation,” Mat. Model. 18 (11), 14–30 (2006).MathSciNet V. M. Goloviznin, “Balanced characteristic method for 1D systems of hyperbolic conservation laws in eulerian representation,” Mat. Model. 18 (11), 14–30 (2006).MathSciNet
29.
Zurück zum Zitat V. M. Goloviznin, V. N. Semenov, I. A. Korotkin, and S. A. Karabasov, “A novel computational method for modelling stochastic advection in heterogeneous media,” Transp. Porous Media 66, 439–456 (2007).MathSciNetCrossRef V. M. Goloviznin, V. N. Semenov, I. A. Korotkin, and S. A. Karabasov, “A novel computational method for modelling stochastic advection in heterogeneous media,” Transp. Porous Media 66, 439–456 (2007).MathSciNetCrossRef
30.
Zurück zum Zitat A. V. Danilin and A. V. Solov’ev, “A modification of the CABARET scheme for the computation of multicomponent gaseous flows,” Vychisl. Metody Programmir. 16, 18–25 (2015). A. V. Danilin and A. V. Solov’ev, “A modification of the CABARET scheme for the computation of multicomponent gaseous flows,” Vychisl. Metody Programmir. 16, 18–25 (2015).
31.
Zurück zum Zitat A. V. Danilin, A. V. Solov’ev, and A. M. Zaitsev, “A modification of the CABARET scheme for numerical simulation of multicomponent gaseous flows in two-dimensional domains,” Vychisl. Metody Programmir. 16, 436–445 (2015). A. V. Danilin, A. V. Solov’ev, and A. M. Zaitsev, “A modification of the CABARET scheme for numerical simulation of multicomponent gaseous flows in two-dimensional domains,” Vychisl. Metody Programmir. 16, 436–445 (2015).
Metadaten
Titel
Simulation of Turbulent Mixing by the CABARET Algorithm for the Case of a Richtmyer–Meshkov Instability
verfasst von
A. V. Danilin
A. V. Solovjev
Publikationsdatum
01.03.2019
Verlag
Pleiades Publishing
Erschienen in
Mathematical Models and Computer Simulations / Ausgabe 2/2019
Print ISSN: 2070-0482
Elektronische ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048219020054

Weitere Artikel der Ausgabe 2/2019

Mathematical Models and Computer Simulations 2/2019 Zur Ausgabe

Premium Partner