Skip to main content
Erschienen in: Mathematical Models and Computer Simulations 2/2019

01.03.2019

Hybrid Approach to Solve Single-Dimensional Gas Dynamics Equations

verfasst von: Y. A. Kriksin, V. F. Tishkin

Erschienen in: Mathematical Models and Computer Simulations | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To solve one-dimensional gas dynamic problems, a hybrid approach is proposed, in which the entropy equation is solved instead of the energy equation in the isentropic flow domains of an ideal gas. The results of the numerical calculations of some model problems obtained by the classical Godunov method and the algorithm based on the hybrid approach are compared.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics, 2nd ed. (Fizmatlit, Moscow, 2001; Butterworth-Heinemann, London, 1987). L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics, 2nd ed. (Fizmatlit, Moscow, 2001; Butterworth-Heinemann, London, 1987).
2.
Zurück zum Zitat S. K. Godunov, “A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations,” Transl. US Joint Publ. Res. Serv., No. 7226 (1969). S. K. Godunov, “A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations,” Transl. US Joint Publ. Res. Serv., No. 7226 (1969).
3.
Zurück zum Zitat S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Gas Dynamics Problems (Nauka, Moscow, 1976) [in Russian]. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Gas Dynamics Problems (Nauka, Moscow, 1976) [in Russian].
4.
Zurück zum Zitat A. G. Kulikovsky, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Taylor and Francis, London, 2000). A. G. Kulikovsky, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Taylor and Francis, London, 2000).
5.
Zurück zum Zitat P. G. le Floch, J. M. Mercier, and C. Rohde, “Fully discrete, entropy conservative schemes of arbitrary order,” SIAM J. Numer. Anal. 40, 1968–1992 (2002).MathSciNetCrossRefMATH P. G. le Floch, J. M. Mercier, and C. Rohde, “Fully discrete, entropy conservative schemes of arbitrary order,” SIAM J. Numer. Anal. 40, 1968–1992 (2002).MathSciNetCrossRefMATH
6.
Zurück zum Zitat F. Lagoutière, “A non-dissipative entropic scheme for convex scalar equations via discontinuous cell-reconstruction,” C. R. Math. 338, 549–554 (2004).MathSciNetCrossRefMATH F. Lagoutière, “A non-dissipative entropic scheme for convex scalar equations via discontinuous cell-reconstruction,” C. R. Math. 338, 549–554 (2004).MathSciNetCrossRefMATH
7.
Zurück zum Zitat X.-H. Cheng, Y.-F. Nie, J.-H. Feng, X.-Y. Luo, and L. Cai, “Self-adjusting entropy-stable scheme for compressible Euler equations,” Chin. Phys. B 24 (2) (2015). X.-H. Cheng, Y.-F. Nie, J.-H. Feng, X.-Y. Luo, and L. Cai, “Self-adjusting entropy-stable scheme for compressible Euler equations,” Chin. Phys. B 24 (2) (2015).
8.
Zurück zum Zitat H. Zakerzadeh and U. S. Fjordholm, “High-order accurate, fully discrete entropy stable schemes for scalar conservation laws,” IMA J. Numer. Anal. 36, 633–654 (2016).MathSciNetCrossRefMATH H. Zakerzadeh and U. S. Fjordholm, “High-order accurate, fully discrete entropy stable schemes for scalar conservation laws,” IMA J. Numer. Anal. 36, 633–654 (2016).MathSciNetCrossRefMATH
9.
Zurück zum Zitat U. S. Fjordholm, R. Kappeli, S. Mishra, and E. Tadmor, “Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws,” Found. Comp. Math. 17, 763–827 (2017).MathSciNetCrossRefMATH U. S. Fjordholm, R. Kappeli, S. Mishra, and E. Tadmor, “Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws,” Found. Comp. Math. 17, 763–827 (2017).MathSciNetCrossRefMATH
10.
Zurück zum Zitat T. Chen and Ch.-W. Shu, “Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws,” J. Comput. Phys. 345, 427–461 (2017).MathSciNetCrossRefMATH T. Chen and Ch.-W. Shu, “Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws,” J. Comput. Phys. 345, 427–461 (2017).MathSciNetCrossRefMATH
11.
Zurück zum Zitat G. A. Sod, “A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws,” J. Comput. Phys. 27, 1–31 (1978).MathSciNetCrossRefMATH G. A. Sod, “A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws,” J. Comput. Phys. 27, 1–31 (1978).MathSciNetCrossRefMATH
12.
Zurück zum Zitat B. Einfeldt, C. D. Munz, P. L. Roe, and B. Sjogren, “On Godunov-type methods near low densities,” J. Comput. Phys. 92, 273–295 (1991).MathSciNetCrossRefMATH B. Einfeldt, C. D. Munz, P. L. Roe, and B. Sjogren, “On Godunov-type methods near low densities,” J. Comput. Phys. 92, 273–295 (1991).MathSciNetCrossRefMATH
13.
Zurück zum Zitat M. E. Ladonkina, O. A. Neklyudova, and V. F. Tishkin, “Application of averaging to smooth the solution in DG method,” KIAM Preprint No. 89 (Keldysh Inst. Appl. Math. RAS, Moscow, 2017). M. E. Ladonkina, O. A. Neklyudova, and V. F. Tishkin, “Application of averaging to smooth the solution in DG method,” KIAM Preprint No. 89 (Keldysh Inst. Appl. Math. RAS, Moscow, 2017).
14.
Zurück zum Zitat M. E. Ladonkina, O. A. Neklyudova, and V. F. Tishkin, “Impact of different limiting functions on the order of solution obtained by RKDG,” Math. Mod. Comput. Simul. 5 (4), 346–349 (2013).CrossRefMATH M. E. Ladonkina, O. A. Neklyudova, and V. F. Tishkin, “Impact of different limiting functions on the order of solution obtained by RKDG,” Math. Mod. Comput. Simul. 5 (4), 346–349 (2013).CrossRefMATH
15.
Zurück zum Zitat M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, and D. I. Utiralov, “The no-slip boundary conditions for discontinuous Galerkin method,” Preprint KIAM No. 32 (Keldysh Inst. Appl. Math. RAS, Moscow, 2014). M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, and D. I. Utiralov, “The no-slip boundary conditions for discontinuous Galerkin method,” Preprint KIAM No. 32 (Keldysh Inst. Appl. Math. RAS, Moscow, 2014).
16.
Zurück zum Zitat M. E. Ladonkina and V. F. Tishkin, “Godunov method: a generalization using piecewise polynomial approximations,” Differ. Equations 51, 895–903 (2015).MathSciNetCrossRefMATH M. E. Ladonkina and V. F. Tishkin, “Godunov method: a generalization using piecewise polynomial approximations,” Differ. Equations 51, 895–903 (2015).MathSciNetCrossRefMATH
17.
Zurück zum Zitat M. E. Ladonkina and V. F. Tishkin, “On Godunov type methods of high order of accuracy,” Dokl. Math. 91, 189–192 (2015).MathSciNetCrossRefMATH M. E. Ladonkina and V. F. Tishkin, “On Godunov type methods of high order of accuracy,” Dokl. Math. 91, 189–192 (2015).MathSciNetCrossRefMATH
18.
Zurück zum Zitat V. F. Tishkin, V. T. Zhukov, and E. E. Myshetskaya, “Justification of Godunov’s scheme in the multidimensional case,” Math. Mod. Comput. Simul. 8, 548–556 (2016).MathSciNetCrossRefMATH V. F. Tishkin, V. T. Zhukov, and E. E. Myshetskaya, “Justification of Godunov’s scheme in the multidimensional case,” Math. Mod. Comput. Simul. 8, 548–556 (2016).MathSciNetCrossRefMATH
19.
Zurück zum Zitat B. Cockburn, “An introduction to the discontinuous Galerkin method for convection –dominated problems, advanced numerical approximation of nonlinear hyperbolic equations,” Lect. Notes Math. 1697, 151–268 (1998).MATH B. Cockburn, “An introduction to the discontinuous Galerkin method for convection –dominated problems, advanced numerical approximation of nonlinear hyperbolic equations,” Lect. Notes Math. 1697, 151–268 (1998).MATH
20.
Zurück zum Zitat D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, “Unified analysis of discontinuous Galerkin methods for elliptic problems,” SIAM J. Numer. Anal. 29, 1749–1779 (2002).MathSciNetCrossRefMATH D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, “Unified analysis of discontinuous Galerkin methods for elliptic problems,” SIAM J. Numer. Anal. 29, 1749–1779 (2002).MathSciNetCrossRefMATH
Metadaten
Titel
Hybrid Approach to Solve Single-Dimensional Gas Dynamics Equations
verfasst von
Y. A. Kriksin
V. F. Tishkin
Publikationsdatum
01.03.2019
Verlag
Pleiades Publishing
Erschienen in
Mathematical Models and Computer Simulations / Ausgabe 2/2019
Print ISSN: 2070-0482
Elektronische ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048219020078

Weitere Artikel der Ausgabe 2/2019

Mathematical Models and Computer Simulations 2/2019 Zur Ausgabe

Premium Partner