Skip to main content
Erschienen in: Fire Technology 6/2016

01.11.2016

Simulations of Smoke Flow Fields in a Wind Tunnel Under the Effect of an Air Curtain for Smoke Confinement

verfasst von: Long-Xing Yu, Tarek Beji, Setareh Ebrahim Zadeh, Fang Liu, Bart Merci

Erschienen in: Fire Technology | Ausgabe 6/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Computational Fluid Dynamics (CFD) simulation results, obtained with Fire Dynamics Simulator (FDS 6.0.1), are presented in order to analyze the performance of an air curtain in blocking fire-induced smoke in a tunnel configuration. The flow and temperature fields are discussed for different air curtain jet velocities and for a range of smoke inlet temperatures. The key objective is the determination of the effectiveness of a vertical air curtain in blocking the fire-induced smoke spreading downstream of the air curtain, as function of the momentum of the air curtain. The results are presented in non-dimensional form, in terms of a ‘momentum ratio’ R, defined as \( R = \frac{{\rho_{j} A_{j} V_{j}^{2} }}{{\rho_{s} A_{s} V_{s}^{2} }} \). This is the ratio of the vertically downward air curtain momentum to the horizontal smoke layer momentum at the position of the air curtain. This allows interpretation of the results, obtained at reduced-scale, in full-scale configurations. The smoke blocking is quantified by means of sealing effectiveness E, defined as one minus the ratio of the average temperature increase in the region downstream of the air curtain to the average temperature increase in the same region without activated air curtain. For small values of R, the sealing effectiveness E increases as the momentum ratio R increases. A maximum sealing effectiveness, E ≈ 60%, is attained for R = 8–10. Higher values of R lead to less effective sealing because the downward impinging air flow pushes smoke into the downward region. For very high values of R the effectiveness increases again, due to dilution of the smoke pushed in the downward region.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Foster AM (2007) CFD optimization of air movement through doorways in refrigerated rooms. In: Computational fluid dynamics in food processing. Contemporary food engineering. CRC Press, pp 167–193. doi:10.1201/9781420009217.ch7 Foster AM (2007) CFD optimization of air movement through doorways in refrigerated rooms. In: Computational fluid dynamics in food processing. Contemporary food engineering. CRC Press, pp 167–193. doi:10.​1201/​9781420009217.​ch7
7.
Zurück zum Zitat McGrattan KB, Hostikka S, Floyd J (2015) Fire dynamics simulator, user’s guide. NIST Special Publication 1019, 6th edn. National Institute of Standards and Technology, USA. doi:10.6028/NIST.SP.1019 McGrattan KB, Hostikka S, Floyd J (2015) Fire dynamics simulator, user’s guide. NIST Special Publication 1019, 6th edn. National Institute of Standards and Technology, USA. doi:10.​6028/​NIST.​SP.​1019
8.
Zurück zum Zitat Hu LH, Fong NK, Yang LZ, Chow WK, Li YZ, Huo R (2007) Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel: fire dynamics simulator comparisons with measured data. J Hazard Mater 140(1–2):293–298. doi:10.1016/j.jhazmat.2006.08.075 CrossRef Hu LH, Fong NK, Yang LZ, Chow WK, Li YZ, Huo R (2007) Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel: fire dynamics simulator comparisons with measured data. J Hazard Mater 140(1–2):293–298. doi:10.​1016/​j.​jhazmat.​2006.​08.​075 CrossRef
11.
Zurück zum Zitat Horvath IA, Buchlin J-M (2012) Extreme PIV applications: simultaneous and instantaneous velocity and concentration measurements on model and real scale car park fire scenarios. Rhode-St-Genèse, Belgium Horvath IA, Buchlin J-M (2012) Extreme PIV applications: simultaneous and instantaneous velocity and concentration measurements on model and real scale car park fire scenarios. Rhode-St-Genèse, Belgium
12.
Zurück zum Zitat Yu L-X, Liu F, Merci B (2015) Analysis of the impact of the inlet boundary conditions in FDS results for air curtain flows in the near-field region, Ninth Mediterranean Combustion Symposium. Rhodes, Greece Yu L-X, Liu F, Merci B (2015) Analysis of the impact of the inlet boundary conditions in FDS results for air curtain flows in the near-field region, Ninth Mediterranean Combustion Symposium. Rhodes, Greece
13.
Zurück zum Zitat Munson BR, Young DF, Okiishi TH (1990) Fundamentals of fluid mechanics. Wiley, New YorkMATH Munson BR, Young DF, Okiishi TH (1990) Fundamentals of fluid mechanics. Wiley, New YorkMATH
14.
Zurück zum Zitat Jarrin N, Prosser R (2008) Synthetic inflow boundary conditions for the numerical simulation of turbulence. University of Manchester Jarrin N, Prosser R (2008) Synthetic inflow boundary conditions for the numerical simulation of turbulence. University of Manchester
16.
Zurück zum Zitat McGrattan K, Hostikka S, Floyd J, Mell W, McDermott R (2015) Fire dynamics simulator, technical reference guide, volume 1: mathematical model. NIST Special Publication 1018, 6th edn. National Institute of Standards and Technology, USA. doi:10.6028/NIST.SP.1018-1 McGrattan K, Hostikka S, Floyd J, Mell W, McDermott R (2015) Fire dynamics simulator, technical reference guide, volume 1: mathematical model. NIST Special Publication 1018, 6th edn. National Institute of Standards and Technology, USA. doi:10.​6028/​NIST.​SP.​1018-1
17.
Zurück zum Zitat Alpert RL (2002) Ceiling jet flows. In: SFPE handbook of fire protection engineering, 3rd edn. National Fire Protection Association, Massachusetts, pp 2-18-12-31. doi:10.1007/978-1-4939-2565-0 Alpert RL (2002) Ceiling jet flows. In: SFPE handbook of fire protection engineering, 3rd edn. National Fire Protection Association, Massachusetts, pp 2-18-12-31. doi:10.​1007/​978-1-4939-2565-0
Metadaten
Titel
Simulations of Smoke Flow Fields in a Wind Tunnel Under the Effect of an Air Curtain for Smoke Confinement
verfasst von
Long-Xing Yu
Tarek Beji
Setareh Ebrahim Zadeh
Fang Liu
Bart Merci
Publikationsdatum
01.11.2016
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 6/2016
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-016-0598-y

Weitere Artikel der Ausgabe 6/2016

Fire Technology 6/2016 Zur Ausgabe