Skip to main content
Erschienen in: Engineering with Computers 3/2011

01.07.2011 | Original Article

Simulations of unsteady cavitating turbulent flow in a Francis turbine using the RANS method and the improved mixture model of two-phase flows

verfasst von: Yulin Wu, Shuhong Liu, Hua-Shu Dou, Liang Zhang

Erschienen in: Engineering with Computers | Ausgabe 3/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper reports the simulation results for the unsteady cavitating turbulent flow in a Francis turbine using the mixture model for cavity–liquid two-phase flows. The RNG kε turbulence model is employed in the Reynolds averaged Navier–Stokes equations in this study. In the mixture model, an improved expression for the mass transfer is employed which is based on evaporation and condensation mechanisms with considering the effects of the non-dissolved gas, the turbulence, the tension of interface at cavity and the effect of phase change rate and so on. The computing domain includes the guide vanes, the runner, and the draft tube, which is discretized with a full three-dimensional mesh system of unstructured tetrahedral shapes. The finite volume method is used to solve the governing equations of the mixture model and a full coupled method is combined into the algorithm to accelerate the solution. The computing results with the mixture model have been compared with those by the single-phase flow model as well as the experimental data. The simulation results show that the cavitating flow computation based on the improved mixture model agrees much better with experimental data than that by the single-phase flow calculation, in terms of the amplitude and dominated frequency of the pressure fluctuation. It is also observed from the present simulations that the amplitude of the pressure fluctuation at small flow rate is larger than that at large flow rate, which accords with the experimental data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Aschenbrenner T, Otto A, Moser W (2006) Classification of vortex and cavitation phenomena and assessment of CFD prediction capabilities. In: Proceedings of the 23rd IAHR symposium on hydraulic machinery and systems. IAHR, Yokohama, pp 17–21 Aschenbrenner T, Otto A, Moser W (2006) Classification of vortex and cavitation phenomena and assessment of CFD prediction capabilities. In: Proceedings of the 23rd IAHR symposium on hydraulic machinery and systems. IAHR, Yokohama, pp 17–21
2.
Zurück zum Zitat Brekke H (1995) A parameter study on cavitation performance of Francis turbines. In: Proceeding of waterpower 1995, pp 1330–1339 Brekke H (1995) A parameter study on cavitation performance of Francis turbines. In: Proceeding of waterpower 1995, pp 1330–1339
3.
Zurück zum Zitat Brewer WH, Kinnas SA (1995) Experimental and computational investigation of sheet cavitation on a hydrofoil. In: Proceedings of the second joint ASME/JSME fluids engineering conference and ASME/EALA sixth international conference on laser anemometry, Hilton Head Island, pp 1–15 Brewer WH, Kinnas SA (1995) Experimental and computational investigation of sheet cavitation on a hydrofoil. In: Proceedings of the second joint ASME/JSME fluids engineering conference and ASME/EALA sixth international conference on laser anemometry, Hilton Head Island, pp 1–15
4.
Zurück zum Zitat Cammenga HK (1980) Evaporation mechanisms of liquids. Current Topics in Materials Science, pp 335–446 Cammenga HK (1980) Evaporation mechanisms of liquids. Current Topics in Materials Science, pp 335–446
5.
Zurück zum Zitat Chen Y, Heister SD (1994) A numerical treatment for attached cavitation. J Fluids Eng 116:613–618CrossRef Chen Y, Heister SD (1994) A numerical treatment for attached cavitation. J Fluids Eng 116:613–618CrossRef
6.
Zurück zum Zitat Collier JG, Thome JR (1994) Convective boiling and condensation, 3rd edn. Oxford University Press, Oxford, UK Collier JG, Thome JR (1994) Convective boiling and condensation, 3rd edn. Oxford University Press, Oxford, UK
7.
Zurück zum Zitat Coutier-Delgosha O, Fortes-Patella R, Reboud JL (2003) Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation. J Fluid Eng 125:38–45CrossRef Coutier-Delgosha O, Fortes-Patella R, Reboud JL (2003) Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation. J Fluid Eng 125:38–45CrossRef
8.
Zurück zum Zitat Deng GB, Ferry M, Piquet J, Visonneau M (1991) New fully coupled solutions of the Navier–Stokes equations. Notes Numer Fluid Mech 35:191–200 Deng GB, Ferry M, Piquet J, Visonneau M (1991) New fully coupled solutions of the Navier–Stokes equations. Notes Numer Fluid Mech 35:191–200
9.
Zurück zum Zitat Deng GB, Piquet J, Vasseur X, Visonneau M (2001) A new fully coupled method for computing turbulent flows. Comput Fluids 30:445–472MATHCrossRef Deng GB, Piquet J, Vasseur X, Visonneau M (2001) A new fully coupled method for computing turbulent flows. Comput Fluids 30:445–472MATHCrossRef
10.
Zurück zum Zitat Deshpande M, Feng J, Merkle CL (1997) Numerical modeling of the thermodynamic effects of cavitation. J Fluids Eng 119:420–427CrossRef Deshpande M, Feng J, Merkle CL (1997) Numerical modeling of the thermodynamic effects of cavitation. J Fluids Eng 119:420–427CrossRef
11.
Zurück zum Zitat Dular M, Bachert R, Stoffel B, Širok B (2005) Experimental evaluation of numerical simulation of cavitating flow around hydrofoil. Eur J Mech B/Fluids 24:522–538 Dular M, Bachert R, Stoffel B, Širok B (2005) Experimental evaluation of numerical simulation of cavitating flow around hydrofoil. Eur J Mech B/Fluids 24:522–538
12.
Zurück zum Zitat Fortes-Patella R, Coutier-Delgosha O, Perrin J, Reboud JL (2007) Numerical model to predict unsteady cavitating flow behavior in inducer blade cascades. J Fluid Eng 129:128–135 Fortes-Patella R, Coutier-Delgosha O, Perrin J, Reboud JL (2007) Numerical model to predict unsteady cavitating flow behavior in inducer blade cascades. J Fluid Eng 129:128–135
13.
Zurück zum Zitat Grogger HA, Alajbegovic A (1998) Calculation of the cavitating flow in venturi geometries using two fluid model. In: Proceeding of ASME fluids engineering division summer meeting, FEDSM98-5295, Washington Grogger HA, Alajbegovic A (1998) Calculation of the cavitating flow in venturi geometries using two fluid model. In: Proceeding of ASME fluids engineering division summer meeting, FEDSM98-5295, Washington
14.
Zurück zum Zitat Guo Y (2006) Large-eddy Simulation of non-cavitating and cavitating flow in venturi geometries using two fluid model. In: Proceedings of the 23rd IAHR symposium on hydraulic machinery and systems. IAHR, Yokohama Guo Y (2006) Large-eddy Simulation of non-cavitating and cavitating flow in venturi geometries using two fluid model. In: Proceedings of the 23rd IAHR symposium on hydraulic machinery and systems. IAHR, Yokohama
15.
Zurück zum Zitat Guo Y, Kato C, Miyagawa K (2007) Large-eddy simulation of non-cavitating and cavitating flows in the draft tube of a Francis turbine. Seisan-Kenkyu 53:83–88 (research letter) Guo Y, Kato C, Miyagawa K (2007) Large-eddy simulation of non-cavitating and cavitating flows in the draft tube of a Francis turbine. Seisan-Kenkyu 53:83–88 (research letter)
16.
Zurück zum Zitat Hagen DE, Schmitt J, Trueblood M (1989) Condensation coefficient measurement in the UMR cloud simulation chamber. J Atmospheric Sci 46:803–816CrossRef Hagen DE, Schmitt J, Trueblood M (1989) Condensation coefficient measurement in the UMR cloud simulation chamber. J Atmospheric Sci 46:803–816CrossRef
17.
Zurück zum Zitat Hu ZM, Chen XC, Wu YL (1991) Incompressible turbulent flow calculation in body-fitted coordinates using block-implicit finite difference method. In: ASME FED-Vol. 112, forum on turbulent flow, pp 179–183 Hu ZM, Chen XC, Wu YL (1991) Incompressible turbulent flow calculation in body-fitted coordinates using block-implicit finite difference method. In: ASME FED-Vol. 112, forum on turbulent flow, pp 179–183
18.
Zurück zum Zitat IEC 60193 Standard (1999) Hydraulic turbines, storage pumps and pump-turbines-model acceptance tests. International Electrotechnical Commission, Geneva IEC 60193 Standard (1999) Hydraulic turbines, storage pumps and pump-turbines-model acceptance tests. International Electrotechnical Commission, Geneva
19.
Zurück zum Zitat Jacob T, Prenat JE (1996) Francis turbine surge: discussion and data base. In: Proceedings of the 18th IAHR symposium, Valencia, Spain 2:855–864 Jacob T, Prenat JE (1996) Francis turbine surge: discussion and data base. In: Proceedings of the 18th IAHR symposium, Valencia, Spain 2:855–864
20.
Zurück zum Zitat Kunza RF, Bogera DA, Stinebringa DR, Chyczewskia TS, Lindaua JW, Gibelinga HJ, Venkateswaranb S, Govindanc TR (2000) A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction. Comput Fluids 29:849–875 Kunza RF, Bogera DA, Stinebringa DR, Chyczewskia TS, Lindaua JW, Gibelinga HJ, Venkateswaranb S, Govindanc TR (2000) A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction. Comput Fluids 29:849–875
22.
Zurück zum Zitat Lindau JW, Kunz RF, Boger DA, Stinebring DR, Gibeling HJ (2002) High Reynolds number, unsteady, multiphase CFD modeling of cavitating flows. J Fluid Eng 124:607–616 Lindau JW, Kunz RF, Boger DA, Stinebring DR, Gibeling HJ (2002) High Reynolds number, unsteady, multiphase CFD modeling of cavitating flows. J Fluid Eng 124:607–616
23.
Zurück zum Zitat Liu SH, Wu YL, Luo XW (2005) Numerical simulation of 3D cavitating turbulent flow in Francis turbine. In: Proceedings of FEDSM-2005, Houston, FEDSM2005-77017 Liu SH, Wu YL, Luo XW (2005) Numerical simulation of 3D cavitating turbulent flow in Francis turbine. In: Proceedings of FEDSM-2005, Houston, FEDSM2005-77017
24.
Zurück zum Zitat Liu SH, Li SC, Zhang L, Wu YL (2008) A mixture model with modified mass transfer expression for cavitating turbulent flow simulation. Eng Comput 25(4):290–304MathSciNetCrossRef Liu SH, Li SC, Zhang L, Wu YL (2008) A mixture model with modified mass transfer expression for cavitating turbulent flow simulation. Eng Comput 25(4):290–304MathSciNetCrossRef
25.
Zurück zum Zitat Liu SH, Zhang L, Nishi M, Wu YL (2009) Cavitating turbulent flow simulation in a Francis turbine based on mixture model. J Fluids Eng 131, 051302-1-8 Liu SH, Zhang L, Nishi M, Wu YL (2009) Cavitating turbulent flow simulation in a Francis turbine based on mixture model. J Fluids Eng 131, 051302-1-8
26.
Zurück zum Zitat Lu T, Samulyak R, Glimm J (2007) Direct numerical simulation of bubbly flows and application to cavitation mitigation. J Fluid Eng 129:595–604CrossRef Lu T, Samulyak R, Glimm J (2007) Direct numerical simulation of bubbly flows and application to cavitation mitigation. J Fluid Eng 129:595–604CrossRef
27.
Zurück zum Zitat Matevž D (2005) Experimental evaluation of numerical simulation of cavitating flow around hydrofoil. Eur J Mech B 24:522–538MATHCrossRef Matevž D (2005) Experimental evaluation of numerical simulation of cavitating flow around hydrofoil. Eur J Mech B 24:522–538MATHCrossRef
28.
Zurück zum Zitat Medvitz RB, Kunz RF, Boger DA, Lindau JW, Yocum AM, Pauley LL (2002) Performance analysis of cavitating flow in centrifugal pumps using multiphase CFD. J Fluid Eng 124:377–383 Medvitz RB, Kunz RF, Boger DA, Lindau JW, Yocum AM, Pauley LL (2002) Performance analysis of cavitating flow in centrifugal pumps using multiphase CFD. J Fluid Eng 124:377–383
29.
Zurück zum Zitat Okamoto H, Goto A (2003) Suppression of cavitation in a Francis turbine runner using 3D inverse design method. Turbomachinery 31:562–567 Okamoto H, Goto A (2003) Suppression of cavitation in a Francis turbine runner using 3D inverse design method. Turbomachinery 31:562–567
30.
Zurück zum Zitat Okita K, Kajishima T (2002) Numerical simulation of unsteady cavitating flow around a hydrofoil. Trans JSME B 68:637–644 Okita K, Kajishima T (2002) Numerical simulation of unsteady cavitating flow around a hydrofoil. Trans JSME B 68:637–644
31.
Zurück zum Zitat Rieger R (1992) Mehrdimensionale berechnung zweiphasiger stroemungen. PhD thesis, Technical University Graz, Graz Rieger R (1992) Mehrdimensionale berechnung zweiphasiger stroemungen. PhD thesis, Technical University Graz, Graz
32.
Zurück zum Zitat Saito Y (2007) Numerical analysis of unsteady behaviour of cloud cavitation around a NACA0015 foil. Comput Mech 40:1–12CrossRef Saito Y (2007) Numerical analysis of unsteady behaviour of cloud cavitation around a NACA0015 foil. Comput Mech 40:1–12CrossRef
33.
Zurück zum Zitat Senocak I, Shyy W (2002) A pressure-based method for turbulent cavitating flow computation. J Comp Phys 176:363–383MATHCrossRef Senocak I, Shyy W (2002) A pressure-based method for turbulent cavitating flow computation. J Comp Phys 176:363–383MATHCrossRef
34.
Zurück zum Zitat Singhal AK, Vaidya N, Leonard AD (1997) Multi-dimensional simulation of cavitating flows using a PDF model for phase change. In: Proceeding of asme fluids engineering division summer meeting, Vancouver, 4:1–8 Singhal AK, Vaidya N, Leonard AD (1997) Multi-dimensional simulation of cavitating flows using a PDF model for phase change. In: Proceeding of asme fluids engineering division summer meeting, Vancouver, 4:1–8
35.
Zurück zum Zitat Singhal AK, Athavale MM, Li H, Jiang Y (2002) Mathematical basis and validation of the full cavitation model. J Fluid Eng 124:617–624CrossRef Singhal AK, Athavale MM, Li H, Jiang Y (2002) Mathematical basis and validation of the full cavitation model. J Fluid Eng 124:617–624CrossRef
36.
Zurück zum Zitat Song CCS, Chen XY, Tani K, Shinmei K, Niikura K, Sato J (1999) Simulation of cavitating flows in Francis turbine and draft tube under off-design conditions. In: Proceedings of the 3rd ASME/JSME joint fluids engineering conference, FEDSM99-6849 Song CCS, Chen XY, Tani K, Shinmei K, Niikura K, Sato J (1999) Simulation of cavitating flows in Francis turbine and draft tube under off-design conditions. In: Proceedings of the 3rd ASME/JSME joint fluids engineering conference, FEDSM99-6849
37.
38.
Zurück zum Zitat Susan-Resiga RF, Muntean S, Anton J (2002) Numerical analysis of cavitation inception in Francis turbine. In: Proceedings of the XXIst IAHR symposium on hydraulic machinery and systems. IAHR, Lausanne Susan-Resiga RF, Muntean S, Anton J (2002) Numerical analysis of cavitation inception in Francis turbine. In: Proceedings of the XXIst IAHR symposium on hydraulic machinery and systems. IAHR, Lausanne
39.
Zurück zum Zitat Thompson MC, Ferziger JH (1989) An adaptive multigrid technique for the incompressible Navier–Stokes equations. J Comp Phys 82:223–233CrossRef Thompson MC, Ferziger JH (1989) An adaptive multigrid technique for the incompressible Navier–Stokes equations. J Comp Phys 82:223–233CrossRef
40.
Zurück zum Zitat Vanka SP (1986) Block-implicit multigrid solution of Navier–Stokes equations in primitive variables. J Comput Phys 65:138–158MathSciNetMATHCrossRef Vanka SP (1986) Block-implicit multigrid solution of Navier–Stokes equations in primitive variables. J Comput Phys 65:138–158MathSciNetMATHCrossRef
41.
Zurück zum Zitat Xing T, Li Z, Frankel SH (2005) Numerical simulation of vortex cavitation in a three-dimensional submerged transitional jet. J Fluid Eng 127:714–725CrossRef Xing T, Li Z, Frankel SH (2005) Numerical simulation of vortex cavitation in a three-dimensional submerged transitional jet. J Fluid Eng 127:714–725CrossRef
Metadaten
Titel
Simulations of unsteady cavitating turbulent flow in a Francis turbine using the RANS method and the improved mixture model of two-phase flows
verfasst von
Yulin Wu
Shuhong Liu
Hua-Shu Dou
Liang Zhang
Publikationsdatum
01.07.2011
Verlag
Springer-Verlag
Erschienen in
Engineering with Computers / Ausgabe 3/2011
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-010-0194-6

Weitere Artikel der Ausgabe 3/2011

Engineering with Computers 3/2011 Zur Ausgabe

Neuer Inhalt