Skip to main content
Erschienen in: Journal of Nanoparticle Research 1/2014

01.01.2014 | Research Paper

Single-walled carbon nanohorns decorated with semiconductor quantum dots to evaluate intracellular transport

verfasst von: Kristen A. Zimmermann, David L. Inglefield Jr., Jianfei Zhang, Harry C. Dorn, Timothy E. Long, Christopher G. Rylander, M. Nichole Rylander

Erschienen in: Journal of Nanoparticle Research | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Single-walled carbon nanohorns (SWNHs) have great potential to enhance thermal and chemotherapeutic drug efficiencies for cancer therapies. Despite their diverse capabilities, minimal research has been conducted so far to study nanoparticle intracellular transport, which is an important step in designing efficient therapies. SWNHs, like many other carbon nanomaterials, do not have inherent fluorescence properties making intracellular transport information difficult to obtain. The goals of this project were to (1) develop a simple reaction scheme to decorate the exohedral surface of SWNHs with fluorescent quantum dots (QDs) and improve conjugate stability, and (2) evaluate SWNH–QD conjugate cellular uptake kinetics and localization in various cancer cell lines of differing origins and morphologies. In this study, SWNHs were conjugated to CdSe/ZnS core/shell QDs using a unique approach to carbodiimide chemistry. Transmission electron microscopy and electron dispersive spectroscopy verified the conjugation of SWNHs and QDs. Cellular uptake kinetics and efficiency were characterized in three malignant cell lines: U-87 MG (glioblastoma), MDA-MB-231 (breast cancer), and AY-27 (bladder transitional cell carcinoma) using flow cytometry. Cellular distribution was verified by confocal microscopy, and cytotoxicity was also evaluated using an alamarBlue assay. Results indicate that cellular uptake kinetics and efficiency are highly dependent on cell type, highlighting the significance of studying nanoparticle transport at the cellular level. Nanoparticle intracellular transport investigations may provide information to optimize treatment parameters (e.g., SWNH concentration, treatment time, etc.) depending on tumor etiology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Al Faraj A, Cieslar K, Lacroix G, Gaillard S, Canot-Soulas E, Cremillieux Y (2009) In vivo imaging of carbon nanotube biodistribution using magnetic resonance imaging. Nano Lett 9(3):1023–1027. doi:10.1021/Nl8032608 CrossRef Al Faraj A, Cieslar K, Lacroix G, Gaillard S, Canot-Soulas E, Cremillieux Y (2009) In vivo imaging of carbon nanotube biodistribution using magnetic resonance imaging. Nano Lett 9(3):1023–1027. doi:10.​1021/​Nl8032608 CrossRef
Zurück zum Zitat Bhirde AA, Patel V, Gavard J, Zhang GF, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3(2):307–316. doi:10.1021/Nn800551s CrossRef Bhirde AA, Patel V, Gavard J, Zhang GF, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3(2):307–316. doi:10.​1021/​Nn800551s CrossRef
Zurück zum Zitat Bottini M, Cerignoli F, Dawson MI, Magrini A, Rosato N, Mustelin T (2006) Full-length single-walled carbon nanotubes decorated with streptavidin-conjugated quantum dots as multivalent intracellular fluorescent nanoprobes. Biomacromolecules 7(8):2259–2263. doi:10.1021/bm0602031 CrossRef Bottini M, Cerignoli F, Dawson MI, Magrini A, Rosato N, Mustelin T (2006) Full-length single-walled carbon nanotubes decorated with streptavidin-conjugated quantum dots as multivalent intracellular fluorescent nanoprobes. Biomacromolecules 7(8):2259–2263. doi:10.​1021/​bm0602031 CrossRef
Zurück zum Zitat Burke A, Ding X, Singh R, Kraft RA, Levi-Polyachenko N, Rylander MN, Szot C, Buchanan C, Whitney J, Fisher J, Hatcher HC, D’Agostino R Jr, Kock ND, Ajayan PM, Carroll DL, Akman S, Torti FM, Torti SV (2009) Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc Natl Acad Sci USA 106(31):12897–12902. doi:10.1073/pnas.0905195106 CrossRef Burke A, Ding X, Singh R, Kraft RA, Levi-Polyachenko N, Rylander MN, Szot C, Buchanan C, Whitney J, Fisher J, Hatcher HC, D’Agostino R Jr, Kock ND, Ajayan PM, Carroll DL, Akman S, Torti FM, Torti SV (2009) Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc Natl Acad Sci USA 106(31):12897–12902. doi:10.​1073/​pnas.​0905195106 CrossRef
Zurück zum Zitat Chen J, Rao AM, Lyuksyutov S, Itkis ME, Hamon MA, Hu H, Cohn RW, Eklund PC, Colbert DT, Smalley RE, Haddon RC (2001) Dissolution of full-length single-walled carbon nanotubes. J Phys Chem B 105(13):2525–2528CrossRef Chen J, Rao AM, Lyuksyutov S, Itkis ME, Hamon MA, Hu H, Cohn RW, Eklund PC, Colbert DT, Smalley RE, Haddon RC (2001) Dissolution of full-length single-walled carbon nanotubes. J Phys Chem B 105(13):2525–2528CrossRef
Zurück zum Zitat Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668. doi:10.1021/Nl052396o CrossRef Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668. doi:10.​1021/​Nl052396o CrossRef
Zurück zum Zitat Dhar S, Liu Z, Thomale J, Dai HJ, Lippard SJ (2008) Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J Am Chem Soc 130(34):11467–11476. doi:10.1021/Ja803036e CrossRef Dhar S, Liu Z, Thomale J, Dai HJ, Lippard SJ (2008) Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J Am Chem Soc 130(34):11467–11476. doi:10.​1021/​Ja803036e CrossRef
Zurück zum Zitat Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386(6623):377–379CrossRef Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386(6623):377–379CrossRef
Zurück zum Zitat Dorn HC, Zhang JF, Ge JC, Shultz MD, Chung EN, Singh G, Shu CY, Fatouros PP, Henderson SC, Corwin FD, Geohegan DB, Puretzky AA, Rouleau CM, More K, Rylander C, Rylander MN, Gibson HW (2010) In vitro and in vivo studies of single-walled carbon nanohorns with encapsulated metallofullerenes and exohedrally functionalized quantum dots. Nano Lett 10(8):2843–2848. doi:10.1021/nl1008635 CrossRef Dorn HC, Zhang JF, Ge JC, Shultz MD, Chung EN, Singh G, Shu CY, Fatouros PP, Henderson SC, Corwin FD, Geohegan DB, Puretzky AA, Rouleau CM, More K, Rylander C, Rylander MN, Gibson HW (2010) In vitro and in vivo studies of single-walled carbon nanohorns with encapsulated metallofullerenes and exohedrally functionalized quantum dots. Nano Lett 10(8):2843–2848. doi:10.​1021/​nl1008635 CrossRef
Zurück zum Zitat Dorozhkin PS, Tovstonog SV, Golberg D, Zhan JH, Ishikawa Y, Shiozawa M, Nakanishi H, Nakata K, Bando Y (2005) A liquid-Ga-filled carbon nanotube: a miniaturized temperature sensor and electrical switch. Small 1(11):1088–1093. doi:10.1002/smll.200500154 CrossRef Dorozhkin PS, Tovstonog SV, Golberg D, Zhan JH, Ishikawa Y, Shiozawa M, Nakanishi H, Nakata K, Bando Y (2005) A liquid-Ga-filled carbon nanotube: a miniaturized temperature sensor and electrical switch. Small 1(11):1088–1093. doi:10.​1002/​smll.​200500154 CrossRef
Zurück zum Zitat dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA (2011) Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines. Small 7(23):3341–3349. doi:10.1002/smll.201101076 CrossRef dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA (2011) Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines. Small 7(23):3341–3349. doi:10.​1002/​smll.​201101076 CrossRef
Zurück zum Zitat Endo M, Strano MS, Ajayan PM (2008) Potential applications of carbon nanotubes. In: Topics in applied physics: carbon nanotubes, vol 111. Springer, Berlin Endo M, Strano MS, Ajayan PM (2008) Potential applications of carbon nanotubes. In: Topics in applied physics: carbon nanotubes, vol 111. Springer, Berlin
Zurück zum Zitat Fisher JW, Sarkar S, Buchanan CF, Szot CS, Whitney J, Hatcher HC, Torti SV, Rylander CG, Rylander MN (2010) Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res 70(23):9855–9864. doi:10.1158/0008-5472.CAN-10-0250 CrossRef Fisher JW, Sarkar S, Buchanan CF, Szot CS, Whitney J, Hatcher HC, Torti SV, Rylander CG, Rylander MN (2010) Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res 70(23):9855–9864. doi:10.​1158/​0008-5472.​CAN-10-0250 CrossRef
Zurück zum Zitat Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976. doi:10.1038/Nbt994 CrossRef Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976. doi:10.​1038/​Nbt994 CrossRef
Zurück zum Zitat Geys J, Nemmar A, Verbeken E, Smolders E, Ratoi M, Hoylaerts MF, Nemery B, Hoet PHM (2008) Acute toxicity and prothrombotic effects of quantum dots: impact of surface charge. Environ Health Perspect 116(12):1607–1613. doi:10.1289/Ehp.11566 CrossRef Geys J, Nemmar A, Verbeken E, Smolders E, Ratoi M, Hoylaerts MF, Nemery B, Hoet PHM (2008) Acute toxicity and prothrombotic effects of quantum dots: impact of surface charge. Environ Health Perspect 116(12):1607–1613. doi:10.​1289/​Ehp.​11566 CrossRef
Zurück zum Zitat Guo Y, Shi DL, Cho HS, Dong ZY, Kulkarni A, Pauletti GM, Wang W, Lian J, Liu W, Ren L, Zhang QQ, Liu GK, Huth C, Wang LM, Ewing RC (2008) In vivo imaging and drug storage by quantum-dot-conjugated carbon nanotubes. Adv Funct Mater 18(17):2489–2497. doi:10.1002/adfm.200800406 CrossRef Guo Y, Shi DL, Cho HS, Dong ZY, Kulkarni A, Pauletti GM, Wang W, Lian J, Liu W, Ren L, Zhang QQ, Liu GK, Huth C, Wang LM, Ewing RC (2008) In vivo imaging and drug storage by quantum-dot-conjugated carbon nanotubes. Adv Funct Mater 18(17):2489–2497. doi:10.​1002/​adfm.​200800406 CrossRef
Zurück zum Zitat Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172. doi:10.1289/Ehp.8284 CrossRef Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172. doi:10.​1289/​Ehp.​8284 CrossRef
Zurück zum Zitat Haremza JM, Hahn MA, Krauss TD (2002) Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes. Nano Lett 2(11):1253–1258. doi:10.1021/Nl025799m CrossRef Haremza JM, Hahn MA, Krauss TD (2002) Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes. Nano Lett 2(11):1253–1258. doi:10.​1021/​Nl025799m CrossRef
Zurück zum Zitat Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4(11):2163–2169. doi:10.1021/Nl048715d CrossRef Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4(11):2163–2169. doi:10.​1021/​Nl048715d CrossRef
Zurück zum Zitat Kam NWS, Liu ZA, Dai HJ (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed 45(4):577–581. doi:10.1002/anie.200503389 CrossRef Kam NWS, Liu ZA, Dai HJ (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed 45(4):577–581. doi:10.​1002/​anie.​200503389 CrossRef
Zurück zum Zitat Klibanov AL, Maruyama K, Beckerleg AM, Torchilin VP, Huang L (1991) Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target. Biochim Biophys Acta 1062(2):142–148CrossRef Klibanov AL, Maruyama K, Beckerleg AM, Torchilin VP, Huang L (1991) Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target. Biochim Biophys Acta 1062(2):142–148CrossRef
Zurück zum Zitat Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand JP, Muller S, Prato M, Bianco A (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2(2):108–113. doi:10.1038/nnano.2006.209 CrossRef Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand JP, Muller S, Prato M, Bianco A (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2(2):108–113. doi:10.​1038/​nnano.​2006.​209 CrossRef
Zurück zum Zitat Lee SM, Lee YH (2000) Hydrogen storage in single-walled carbon nanotubes. Appl Phys Lett 76(20):2877–2879CrossRef Lee SM, Lee YH (2000) Hydrogen storage in single-walled carbon nanotubes. Appl Phys Lett 76(20):2877–2879CrossRef
Zurück zum Zitat Li L, Daou TJ, Texier I, Tran TKC, Nguyen QL, Reiss P (2009) Highly luminescent CuInS(2)/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chem Mater 21(12):2422–2429. doi:10.1021/Cm900103b CrossRef Li L, Daou TJ, Texier I, Tran TKC, Nguyen QL, Reiss P (2009) Highly luminescent CuInS(2)/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chem Mater 21(12):2422–2429. doi:10.​1021/​Cm900103b CrossRef
Zurück zum Zitat Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446. doi:10.1038/Nmat1390 CrossRef Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446. doi:10.​1038/​Nmat1390 CrossRef
Zurück zum Zitat Miyawaki J, Yudasaka M, Imai H, Yorimitsu H, Isobe H, Nakamura E, Iijima S (2006) In vivo magnetic resonance imaging of single-walled carbon nanohorns by labeling with magnetite nanoparticles. Adv Mater 18(8):1010–1014. doi:10.1002/adma.200502174 CrossRef Miyawaki J, Yudasaka M, Imai H, Yorimitsu H, Isobe H, Nakamura E, Iijima S (2006) In vivo magnetic resonance imaging of single-walled carbon nanohorns by labeling with magnetite nanoparticles. Adv Mater 18(8):1010–1014. doi:10.​1002/​adma.​200502174 CrossRef
Zurück zum Zitat Miyawaki J, Matsumura S, Yuge R, Murakami T, Sato S, Tonnida A, Tsuruo T, Ichihashi T, Fujinami T, Irie H, Tsuchida K, Iijima S, Shiba K, Yudasaka M (2009) Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd(2)O(3) labels. ACS Nano 3(6):1399–1406. doi:10.1021/Nn9004846 CrossRef Miyawaki J, Matsumura S, Yuge R, Murakami T, Sato S, Tonnida A, Tsuruo T, Ichihashi T, Fujinami T, Irie H, Tsuchida K, Iijima S, Shiba K, Yudasaka M (2009) Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd(2)O(3) labels. ACS Nano 3(6):1399–1406. doi:10.​1021/​Nn9004846 CrossRef
Zurück zum Zitat Monteiro-Riviere NA, Inman AO, Zhang LW (2009) Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234(2):222–235. doi:10.1016/j.taap.2008.09.030 CrossRef Monteiro-Riviere NA, Inman AO, Zhang LW (2009) Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234(2):222–235. doi:10.​1016/​j.​taap.​2008.​09.​030 CrossRef
Zurück zum Zitat Muralkami T, Ajima K, Miyawaki J, Yudasaka M, Iijima S, Shiba K (2004) Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol Pharm 1(6):399–405. doi:10.1021/Mp049928e CrossRef Muralkami T, Ajima K, Miyawaki J, Yudasaka M, Iijima S, Shiba K (2004) Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol Pharm 1(6):399–405. doi:10.​1021/​Mp049928e CrossRef
Zurück zum Zitat Ozkan CS, Ravindran S, Chaudhary S, Colburn B, Ozkan M (2003) Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications. Nano Lett 3(4):447–453. doi:10.1021/nl0259683 CrossRef Ozkan CS, Ravindran S, Chaudhary S, Colburn B, Ozkan M (2003) Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications. Nano Lett 3(4):447–453. doi:10.​1021/​nl0259683 CrossRef
Zurück zum Zitat Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14(7):R15–R27CrossRef Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14(7):R15–R27CrossRef
Zurück zum Zitat Porter AE, Gass M, Bendall JS, Muller K, Goode A, Skepper JN, Midgley PA, Welland M (2009) Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells. ACS Nano 3(6):1485–1492. doi:10.1021/Nn900416z CrossRef Porter AE, Gass M, Bendall JS, Muller K, Goode A, Skepper JN, Midgley PA, Welland M (2009) Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells. ACS Nano 3(6):1485–1492. doi:10.​1021/​Nn900416z CrossRef
Zurück zum Zitat Puretzky AA, Styers-Barnett DJ, Rouleau CM, Hu H, Zhao B, Ivanov IN, Geohegan DB (2008) Cumulative and continuous laser vaporization synthesis of single wall carbon nanotubes and nanohorns. Appl Phys A 93(4):849–855. doi:10.1007/s00339-008-4744-3 CrossRef Puretzky AA, Styers-Barnett DJ, Rouleau CM, Hu H, Zhao B, Ivanov IN, Geohegan DB (2008) Cumulative and continuous laser vaporization synthesis of single wall carbon nanotubes and nanohorns. Appl Phys A 93(4):849–855. doi:10.​1007/​s00339-008-4744-3 CrossRef
Zurück zum Zitat Raffaelle RP, Landi BJ, Evans CM, Worman JJ, Castro SL, Bailey SG (2006) Noncovalent attachment of CdSe quantum dots to single wall carbon nanotubes. Mater Lett 60(29–30):3502–3506. doi:10.1016/j.matlet.2006.03.057 Raffaelle RP, Landi BJ, Evans CM, Worman JJ, Castro SL, Bailey SG (2006) Noncovalent attachment of CdSe quantum dots to single wall carbon nanotubes. Mater Lett 60(29–30):3502–3506. doi:10.​1016/​j.​matlet.​2006.​03.​057
Zurück zum Zitat Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775. doi:10.1038/Nmeth.1248 CrossRef Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775. doi:10.​1038/​Nmeth.​1248 CrossRef
Zurück zum Zitat Richard C, Doan BT, Beloeil JC, Bessodes M, Toth E, Scherman D (2008) Noncovalent functionalization of carbon nanotubes with amphiphilic Gd3+ chelates: toward powerful T-1 and T-2 MRI contrast agents. Nano Lett 8(1):232–236. doi:10.1021/N1072509z CrossRef Richard C, Doan BT, Beloeil JC, Bessodes M, Toth E, Scherman D (2008) Noncovalent functionalization of carbon nanotubes with amphiphilic Gd3+ chelates: toward powerful T-1 and T-2 MRI contrast agents. Nano Lett 8(1):232–236. doi:10.​1021/​N1072509z CrossRef
Zurück zum Zitat Schlapbach L, Zuttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414(6861):353–358CrossRef Schlapbach L, Zuttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414(6861):353–358CrossRef
Zurück zum Zitat Shi DL, Guo Y, Dong ZY, Lian J, Wang W, Liu G, Wang LM, Ewing RC (2007) Quantum-dot-activated luminescent carbon nanotubes via a nano scale surface functionalization for in vivo imaging. Adv Mater 19(8):4033 Shi DL, Guo Y, Dong ZY, Lian J, Wang W, Liu G, Wang LM, Ewing RC (2007) Quantum-dot-activated luminescent carbon nanotubes via a nano scale surface functionalization for in vivo imaging. Adv Mater 19(8):4033
Zurück zum Zitat Suehiro J, Zhou GB, Hara M (2003) Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy. J Phys D 36(21):L109–L114CrossRef Suehiro J, Zhou GB, Hara M (2003) Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy. J Phys D 36(21):L109–L114CrossRef
Zurück zum Zitat Susumu K, Medintz IL, Mattoussi H (2009) Colloidal quantum dots: synthesis, photophysical properties, and biofunctionalization strategies. In: Mattoussi H, Cheon J (eds) Inorganic nanoprobes for biological sensing and imaging. Artech House, Inc., Norwood, pp 1–26 Susumu K, Medintz IL, Mattoussi H (2009) Colloidal quantum dots: synthesis, photophysical properties, and biofunctionalization strategies. In: Mattoussi H, Cheon J (eds) Inorganic nanoprobes for biological sensing and imaging. Artech House, Inc., Norwood, pp 1–26
Zurück zum Zitat Tchoul MN, Ford WT, Lolli G, Resasco DE, Arepalli S (2007) Effect of mild nitric acid oxidation on dispersability, size, and structure of single-walled carbon nanotubes. Chem Mater 19(23):5765–5772. doi:10.1021/Cm071758l CrossRef Tchoul MN, Ford WT, Lolli G, Resasco DE, Arepalli S (2007) Effect of mild nitric acid oxidation on dispersability, size, and structure of single-walled carbon nanotubes. Chem Mater 19(23):5765–5772. doi:10.​1021/​Cm071758l CrossRef
Zurück zum Zitat Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95(2):300–312. doi:10.1093/toxsci/kfl165 CrossRef Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95(2):300–312. doi:10.​1093/​toxsci/​kfl165 CrossRef
Zurück zum Zitat Utsumi S, Miyawaki J, Tanaka H, Hattori Y, Itoi T, Ichikuni N, Kanoh H, Yudasaka M, Iijima S, Kaneko K (2005) Opening mechanism of internal nanoporosity of single-wall carbon nanohorn. J Phys Chem B 109(30):14319–14324. doi:10.1021/Jp0512661 CrossRef Utsumi S, Miyawaki J, Tanaka H, Hattori Y, Itoi T, Ichikuni N, Kanoh H, Yudasaka M, Iijima S, Kaneko K (2005) Opening mechanism of internal nanoporosity of single-wall carbon nanohorn. J Phys Chem B 109(30):14319–14324. doi:10.​1021/​Jp0512661 CrossRef
Zurück zum Zitat Wang J, Liu GD, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126(10):3010–3011. doi:10.1021/Ja031723w CrossRef Wang J, Liu GD, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126(10):3010–3011. doi:10.​1021/​Ja031723w CrossRef
Zurück zum Zitat White B, Banerjee S, O’Brien S, Turro NJ, Herman IP (2007) Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J Phys Chem C 111(37):13684–13690. doi:10.1021/Jp070853e CrossRef White B, Banerjee S, O’Brien S, Turro NJ, Herman IP (2007) Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J Phys Chem C 111(37):13684–13690. doi:10.​1021/​Jp070853e CrossRef
Zurück zum Zitat Whitney JR, Sarkar S, Zhang JF, Thao D, Young T, Manson MK, Campbell TA, Puretzky AA, Rouleau CM, More KL, Geohegan DB, Rylander CG, Dorn HC, Rylander MN (2011) Single walled carbon nanohorns as photothermal cancer agents. Laser Surg Med 43(1):43–51. doi:10.1002/lsm.21025 CrossRef Whitney JR, Sarkar S, Zhang JF, Thao D, Young T, Manson MK, Campbell TA, Puretzky AA, Rouleau CM, More KL, Geohegan DB, Rylander CG, Dorn HC, Rylander MN (2011) Single walled carbon nanohorns as photothermal cancer agents. Laser Surg Med 43(1):43–51. doi:10.​1002/​lsm.​21025 CrossRef
Zurück zum Zitat Yong KT, Ding H, Roy I, Law WC, Bergey EJ, Maitra A, Prasad PN (2009) Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 3(3):502–510. doi:10.1021/Nn8008933 CrossRef Yong KT, Ding H, Roy I, Law WC, Bergey EJ, Maitra A, Prasad PN (2009) Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 3(3):502–510. doi:10.​1021/​Nn8008933 CrossRef
Zurück zum Zitat Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular-permeability in a human tumor xenograft—molecular-size dependence and cutoff size. Cancer Res 55(17):3752–3756 Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular-permeability in a human tumor xenograft—molecular-size dependence and cutoff size. Cancer Res 55(17):3752–3756
Zurück zum Zitat Yudasaka M, Iijima S, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K (1999) Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 309(3–4):165–170 Yudasaka M, Iijima S, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K (1999) Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 309(3–4):165–170
Zurück zum Zitat Yudasaka M, Iijima S, Crespi VH (2008) Single-wall carbon nanohorns and nanocones. Top Appl Phys 111:605–629CrossRef Yudasaka M, Iijima S, Crespi VH (2008) Single-wall carbon nanohorns and nanocones. Top Appl Phys 111:605–629CrossRef
Zurück zum Zitat Zhang M, Murakami T, Ajima K, Tsuchida K, Sandanayaka ASD, Ito O, Iijima S, Yudasaka M (2008) Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proc Natl Acad Sci USA 105(39):14773–14778. doi:10.1073/pnas.0801349105 CrossRef Zhang M, Murakami T, Ajima K, Tsuchida K, Sandanayaka ASD, Ito O, Iijima S, Yudasaka M (2008) Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proc Natl Acad Sci USA 105(39):14773–14778. doi:10.​1073/​pnas.​0801349105 CrossRef
Zurück zum Zitat Zimmer JP, Kim SW, Ohnishi S, Tanaka E, Frangioni JV, Bawendi MG (2006) Size series of small indium arsenide–zinc selenide core–shell nanocrystals and their application to in vivo imaging. J Am Chem Soc 128(8):2526–2527. doi:10.1021/Ja0579816 CrossRef Zimmer JP, Kim SW, Ohnishi S, Tanaka E, Frangioni JV, Bawendi MG (2006) Size series of small indium arsenide–zinc selenide core–shell nanocrystals and their application to in vivo imaging. J Am Chem Soc 128(8):2526–2527. doi:10.​1021/​Ja0579816 CrossRef
Metadaten
Titel
Single-walled carbon nanohorns decorated with semiconductor quantum dots to evaluate intracellular transport
verfasst von
Kristen A. Zimmermann
David L. Inglefield Jr.
Jianfei Zhang
Harry C. Dorn
Timothy E. Long
Christopher G. Rylander
M. Nichole Rylander
Publikationsdatum
01.01.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 1/2014
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-013-2078-3

Weitere Artikel der Ausgabe 1/2014

Journal of Nanoparticle Research 1/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.