Skip to main content
Erschienen in: Shape Memory and Superelasticity 3/2023

03.05.2023 | TECHNICAL ARTICLE

Sinter-Based Additive Manufacturing of Ni–Ti Shape Memory Alloy

verfasst von: Yeshurun Cohen, Carlo Burkhardt, Lucas Vogel, Andreas Baum, Gerald Mitteramskogler, Doron Shilo, Eilon Faran

Erschienen in: Shape Memory and Superelasticity | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Additive manufacturing (AM) of Shape Memory Alloys (SMA) is an emerging technology that can open the route for numerous new applications in the fields of actuation, sensing, energy harvesting, and heat management. Currently, most AM processes of SMA rely on liquid-state methods that locally melt the metallic feedstock. Recent advances in sinter-based AM have the potential to facilitate the control over the final microstructure and properties of the printed SMA. This article presents the production and characterization of Ni–Ti SMA using sinter-based Lithography-based Metal Manufacturing (LMM). We report a recoverable strain of up to 2.3% under compression, while the amount of irrecoverable plastic strain is smaller than 0.05% up to a stress of 800 MPa. The high strength with moderate recoverable strain is attributed to the carbon content that promotes the formation of Ti-carbides during high temperature sintering. We analyze the origin and role of the carbides in the thermo-mechanical response of the AM Ni–Ti and argue that this strengthening mechanism calls for further studies and can be beneficial for certain applications. Our results indicate that LMM is a feasible and promising method to produce net-shaped SMA and encourage future studies of other sinter-based AM processes.
Literatur
1.
Zurück zum Zitat Otsuka K, Wayman CM (1999) Shape memory materials. Cambridge University Press, Cambridge Otsuka K, Wayman CM (1999) Shape memory materials. Cambridge University Press, Cambridge
8.
Zurück zum Zitat Auricchio F, Boatti E, Conti M, Marconi S (2021) Chapter 19—SMA biomedical applications. In: Concilio A, Antonucci V, Auricchio F et al (eds) Shape memory alloy engineering, 2nd edn. Butterworth-Heinemann, Boston, pp 627–658CrossRef Auricchio F, Boatti E, Conti M, Marconi S (2021) Chapter 19—SMA biomedical applications. In: Concilio A, Antonucci V, Auricchio F et al (eds) Shape memory alloy engineering, 2nd edn. Butterworth-Heinemann, Boston, pp 627–658CrossRef
18.
Zurück zum Zitat Elahinia M, Nematollahi M, Baghbaderani KS et al (2021) Chapter 6—manufacturing of shape memory alloys. In: Concilio A, Antonucci V, Auricchio F et al (eds) Shape memory alloy engineering, 2nd edn. Butterworth-Heinemann, Boston, pp 165–193CrossRef Elahinia M, Nematollahi M, Baghbaderani KS et al (2021) Chapter 6—manufacturing of shape memory alloys. In: Concilio A, Antonucci V, Auricchio F et al (eds) Shape memory alloy engineering, 2nd edn. Butterworth-Heinemann, Boston, pp 165–193CrossRef
24.
Zurück zum Zitat Burow J, Prokofiev E, Somsen C et al (2008) Martensitic Transformations and functional stability in ultra-fine grained NiTi shape memory alloys. In: Nanomaterials by severe plastic deformation IV. Trans Tech Publications Ltd, Stafa-Zuerich, pp 852–857 Burow J, Prokofiev E, Somsen C et al (2008) Martensitic Transformations and functional stability in ultra-fine grained NiTi shape memory alloys. In: Nanomaterials by severe plastic deformation IV. Trans Tech Publications Ltd, Stafa-Zuerich, pp 852–857
25.
Zurück zum Zitat Prokofiev E, Burow J, Frenzel J et al (2011) Phase transformations and functional properties of NiTi alloy with ultrafine-grained structure. In: Nanomaterials by severe plastic deformation: NANOSPD5. Trans Tech Publications Ltd, Stafa-Zuerich, pp 1059–1064 Prokofiev E, Burow J, Frenzel J et al (2011) Phase transformations and functional properties of NiTi alloy with ultrafine-grained structure. In: Nanomaterials by severe plastic deformation: NANOSPD5. Trans Tech Publications Ltd, Stafa-Zuerich, pp 1059–1064
26.
Zurück zum Zitat Oshida Y, Tominaga T (2020) Nickel–titanium materials: biomedical applications. Walter de Gruyter GmbH, MunichCrossRef Oshida Y, Tominaga T (2020) Nickel–titanium materials: biomedical applications. Walter de Gruyter GmbH, MunichCrossRef
39.
Zurück zum Zitat Burkhardt C (2020) Beginner’s guide to 3 leading sinter-based metal additive manufacturing technologies. Int J Powder Metall 14:69–79 Burkhardt C (2020) Beginner’s guide to 3 leading sinter-based metal additive manufacturing technologies. Int J Powder Metall 14:69–79
46.
Zurück zum Zitat Mitteramskogler G, Schwentenwein M, Seisenbacher S et al (2018) Lithographic additive manufacturing of metalbased suspensions. Metal Addit Manuf 4:131–134 Mitteramskogler G, Schwentenwein M, Seisenbacher S et al (2018) Lithographic additive manufacturing of metalbased suspensions. Metal Addit Manuf 4:131–134
47.
Zurück zum Zitat Burkhardt C, Gonzalez-Guiterrez J, Hampel S et al (2018) Resource efficient production route for rare earth magnets. Steinbeis, Berlin Burkhardt C, Gonzalez-Guiterrez J, Hampel S et al (2018) Resource efficient production route for rare earth magnets. Steinbeis, Berlin
Metadaten
Titel
Sinter-Based Additive Manufacturing of Ni–Ti Shape Memory Alloy
verfasst von
Yeshurun Cohen
Carlo Burkhardt
Lucas Vogel
Andreas Baum
Gerald Mitteramskogler
Doron Shilo
Eilon Faran
Publikationsdatum
03.05.2023
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 3/2023
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-023-00436-y

Weitere Artikel der Ausgabe 3/2023

Shape Memory and Superelasticity 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.