Skip to main content

2019 | OriginalPaper | Buchkapitel

5. SnS Array for Anode of Na-Ion Battery

verfasst von : Dr. Dongliang Chao

Erschienen in: Graphene Network Scaffolded Flexible Electrodes—From Lithium to Sodium Ion Batteries

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In perusing low cost and safe energy storage technologies, one of the most appealing alternatives is to use Na instead of Li because sodium ion batteries (NIBs) do offer the “only” prospects of the very same performance as lithium ion batteries (LIBs) with a much better long-term sustainability perspective.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Chao, C. Zhu, X. Xia, J. Liu, X. Zhang, J. Wang, P. Liang, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, Graphene quantum dots coated VO2 arrays for highly durable electrodes for li and na ion batteries. Nano Lett. 15, 565–573 (2015)CrossRef D. Chao, C. Zhu, X. Xia, J. Liu, X. Zhang, J. Wang, P. Liang, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, Graphene quantum dots coated VO2 arrays for highly durable electrodes for li and na ion batteries. Nano Lett. 15, 565–573 (2015)CrossRef
2.
Zurück zum Zitat N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, P2-Type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012)CrossRef N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, P2-Type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012)CrossRef
3.
Zurück zum Zitat D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015)CrossRef D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015)CrossRef
4.
Zurück zum Zitat C. Li, C. Yin, L. Gu, R.E. Dinnebier, X. Mu, P.A. van Aken, J. Maier, An FeF3·0.5H2O polytype: a microporous framework compound with intersecting tunnels for Li and Na batteries. J. Am. Chem. Soc. 135, 11425–11428 (2013)CrossRef C. Li, C. Yin, L. Gu, R.E. Dinnebier, X. Mu, P.A. van Aken, J. Maier, An FeF3·0.5H2O polytype: a microporous framework compound with intersecting tunnels for Li and Na batteries. J. Am. Chem. Soc. 135, 11425–11428 (2013)CrossRef
5.
Zurück zum Zitat Y. Fang, L. Xiao, J. Qian, X. Ai, H. Yang, Y. Cao, Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries. Nano Lett. 14, 3539–3543 (2014)CrossRef Y. Fang, L. Xiao, J. Qian, X. Ai, H. Yang, Y. Cao, Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries. Nano Lett. 14, 3539–3543 (2014)CrossRef
6.
Zurück zum Zitat A. Kohandehghan, K. Cui, M. Kupsta, J. Ding, E. Memarzadeh Lotfabad, W.P. Kalisvaart, D. Mitlin, Activation with Li enables facile sodium storage in germanium. Nano Lett. 14, 5873–5882 (2014)CrossRef A. Kohandehghan, K. Cui, M. Kupsta, J. Ding, E. Memarzadeh Lotfabad, W.P. Kalisvaart, D. Mitlin, Activation with Li enables facile sodium storage in germanium. Nano Lett. 14, 5873–5882 (2014)CrossRef
7.
Zurück zum Zitat L. Wu, H. Lu, L. Xiao, X. Ai, H. Yang, Y. Cao, Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries. J. Mater. Chem. A 3, 5708–5713 (2015)CrossRef L. Wu, H. Lu, L. Xiao, X. Ai, H. Yang, Y. Cao, Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries. J. Mater. Chem. A 3, 5708–5713 (2015)CrossRef
8.
Zurück zum Zitat X. Xie, K. Kretschmer, J. Zhang, B. Sun, D. Su, G. Wang, Sn@CNT nanopillars grown perpendicularly on carbon paper: a novel free-standing anode for sodium ion batteries. Nano Energy 13, 208–217 (2015)CrossRef X. Xie, K. Kretschmer, J. Zhang, B. Sun, D. Su, G. Wang, Sn@CNT nanopillars grown perpendicularly on carbon paper: a novel free-standing anode for sodium ion batteries. Nano Energy 13, 208–217 (2015)CrossRef
9.
Zurück zum Zitat T. Zhou, W.K. Pang, C. Zhang, J. Yang, Z. Chen, H.K. Liu, Z. Guo, Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8, 8323–8333 (2014)CrossRef T. Zhou, W.K. Pang, C. Zhang, J. Yang, Z. Chen, H.K. Liu, Z. Guo, Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8, 8323–8333 (2014)CrossRef
10.
Zurück zum Zitat P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014)CrossRef P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014)CrossRef
11.
Zurück zum Zitat T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146–151 (2010)CrossRef T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146–151 (2010)CrossRef
12.
Zurück zum Zitat H.S. Kim, J.B. Cook, S.H. Tolbert, B. Dunn, The development of pseudocapacitive properties in nanosized-MoO2. J. Electrochem. Soc. 162, A5083–A5090 (2015)CrossRef H.S. Kim, J.B. Cook, S.H. Tolbert, B. Dunn, The development of pseudocapacitive properties in nanosized-MoO2. J. Electrochem. Soc. 162, A5083–A5090 (2015)CrossRef
13.
Zurück zum Zitat S. Li, J. Qiu, C. Lai, M. Ling, H. Zhao, S. Zhang, Surface capacitive contributions: towards high rate anode materials for sodium ion batteries. Nano Energy 12, 224–230 (2015)CrossRef S. Li, J. Qiu, C. Lai, M. Ling, H. Zhao, S. Zhang, Surface capacitive contributions: towards high rate anode materials for sodium ion batteries. Nano Energy 12, 224–230 (2015)CrossRef
14.
Zurück zum Zitat Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn, Y. Lu, High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6, 4319–4327 (2012)CrossRef Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn, Y. Lu, High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6, 4319–4327 (2012)CrossRef
15.
Zurück zum Zitat C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan, L. Mai, P. Hu, B. Shan, Y. Huang, Na(+) intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 6, 6929 (2015)CrossRef C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan, L. Mai, P. Hu, B. Shan, Y. Huang, Na(+) intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 6, 6929 (2015)CrossRef
16.
Zurück zum Zitat P. Yu, C. Li, X. Guo, Sodium storage and pseudocapacitive charge in textured Li4Ti5O12 thin films. J. Phys. Chem. C 118, 10616–10624 (2014)CrossRef P. Yu, C. Li, X. Guo, Sodium storage and pseudocapacitive charge in textured Li4Ti5O12 thin films. J. Phys. Chem. C 118, 10616–10624 (2014)CrossRef
17.
Zurück zum Zitat V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014)CrossRef V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014)CrossRef
18.
Zurück zum Zitat D. Chao, X. Xia, J. Liu, Z. Fan, C.F. Ng, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 26, 5794–5800 (2014)CrossRef D. Chao, X. Xia, J. Liu, Z. Fan, C.F. Ng, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 26, 5794–5800 (2014)CrossRef
19.
Zurück zum Zitat D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu, J. Wang, X. Fan, S.V. Savilov, J. Lin, H.J. Fan, Z.X. Shen, Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016)CrossRef D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu, J. Wang, X. Fan, S.V. Savilov, J. Lin, H.J. Fan, Z.X. Shen, Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016)CrossRef
20.
Zurück zum Zitat J. McMurry, Organic Chemistry, 8th edn. (Brooks/Cole, California, 2012) J. McMurry, Organic Chemistry, 8th edn. (Brooks/Cole, California, 2012)
21.
Zurück zum Zitat H.C. Shin, J. Dong, M. Liu, Nanoporous structures prepared by an electrochemical deposition process. Adv. Mater. 15, 1610–1614 (2003)CrossRef H.C. Shin, J. Dong, M. Liu, Nanoporous structures prepared by an electrochemical deposition process. Adv. Mater. 15, 1610–1614 (2003)CrossRef
22.
Zurück zum Zitat J.A. Gursky, S.D. Blough, C. Luna, C. Gomez, A.N. Luevano, E.A. Gardner, Particle−particle interactions between layered double hydroxide nanoparticles. J. Am. Chem. Soc. 128, 8376–8377 (2006)CrossRef J.A. Gursky, S.D. Blough, C. Luna, C. Gomez, A.N. Luevano, E.A. Gardner, Particle−particle interactions between layered double hydroxide nanoparticles. J. Am. Chem. Soc. 128, 8376–8377 (2006)CrossRef
23.
Zurück zum Zitat X.-L. Gou, J. Chen, P.-W. Shen, Synthesis, characterization and application of SnSx (x = 1, 2) nanoparticles. Mater. Chem. Phys. 93, 557–566 (2005)CrossRef X.-L. Gou, J. Chen, P.-W. Shen, Synthesis, characterization and application of SnSx (x = 1, 2) nanoparticles. Mater. Chem. Phys. 93, 557–566 (2005)CrossRef
24.
Zurück zum Zitat Y. Sun, L. Zhao, H. Pan, X. Lu, L. Gu, Y.S. Hu, H. Li, M. Armand, Y. Ikuhara, L. Chen, X. Huang, Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013)CrossRef Y. Sun, L. Zhao, H. Pan, X. Lu, L. Gu, Y.S. Hu, H. Li, M. Armand, Y. Ikuhara, L. Chen, X. Huang, Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013)CrossRef
25.
Zurück zum Zitat L. Wu, H. Lu, L. Xiao, X. Ai, H. Yang, Y. Cao, Improved sodium-storage performance of stannous sulfide@reduced graphene oxide composite as high capacity anodes for sodium-ion batteries. J. Power Sources 293, 784–789 (2015)CrossRef L. Wu, H. Lu, L. Xiao, X. Ai, H. Yang, Y. Cao, Improved sodium-storage performance of stannous sulfide@reduced graphene oxide composite as high capacity anodes for sodium-ion batteries. J. Power Sources 293, 784–789 (2015)CrossRef
26.
Zurück zum Zitat A.J. Bard, L.R. Faulkner, Electrochemical Method: Fundamentals and Applications (WileySons, New York, 1980) A.J. Bard, L.R. Faulkner, Electrochemical Method: Fundamentals and Applications (WileySons, New York, 1980)
27.
Zurück zum Zitat G.A. Muller, J.B. Cook, H.S. Kim, S.H. Tolbert, B. Dunn, High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 15, 1911–1917 (2015)CrossRef G.A. Muller, J.B. Cook, H.S. Kim, S.H. Tolbert, B. Dunn, High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 15, 1911–1917 (2015)CrossRef
28.
Zurück zum Zitat V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruna, P. Simon, B. Dunn, High-rate electrochemical energy storage through Li + intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013)CrossRef V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruna, P. Simon, B. Dunn, High-rate electrochemical energy storage through Li + intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013)CrossRef
29.
Zurück zum Zitat S. Ardizzone, G. Fregonara, S. Trasatti, “Inner” and “outer” active surface of RuO2 electrodes. Electrochim. Acta 35, 263–267 (1990)CrossRef S. Ardizzone, G. Fregonara, S. Trasatti, “Inner” and “outer” active surface of RuO2 electrodes. Electrochim. Acta 35, 263–267 (1990)CrossRef
30.
Zurück zum Zitat J. Come, V. Augustyn, J.W. Kim, P. Rozier, P.L. Taberna, P. Gogotsi, J.W. Long, B. Dunn, P. Simon, Electrochemical kinetics of nanostructured Nb2O5 electrodes. J. Electrochem. Soc. 161, A718–A725 (2014)CrossRef J. Come, V. Augustyn, J.W. Kim, P. Rozier, P.L. Taberna, P. Gogotsi, J.W. Long, B. Dunn, P. Simon, Electrochemical kinetics of nanostructured Nb2O5 electrodes. J. Electrochem. Soc. 161, A718–A725 (2014)CrossRef
31.
Zurück zum Zitat D. Kundu, E. Talaie, V. Duffort, L.F. Nazar, The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed. 54, 3431–3448 (2015)CrossRef D. Kundu, E. Talaie, V. Duffort, L.F. Nazar, The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed. 54, 3431–3448 (2015)CrossRef
32.
Zurück zum Zitat H. Kim, J. Hong, K.Y. Park, H. Kim, S.W. Kim, K. Kang, Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788–11827 (2014)CrossRef H. Kim, J. Hong, K.Y. Park, H. Kim, S.W. Kim, K. Kang, Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788–11827 (2014)CrossRef
33.
Zurück zum Zitat J. Lu, C. Nan, L. Li, Q. Peng, Y. Li, Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in Li-ion batteries. Nano Research 6, 55–64 (2012)CrossRef J. Lu, C. Nan, L. Li, Q. Peng, Y. Li, Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in Li-ion batteries. Nano Research 6, 55–64 (2012)CrossRef
34.
Zurück zum Zitat A.M. Tripathi, S. Mitra, The influence of electrode structure on the performance of an SnS anode in Li-ion batteries: effect of the electrode particle, conductive support shape and additive. RSC Adv. 5, 23671–23682 (2015)CrossRef A.M. Tripathi, S. Mitra, The influence of electrode structure on the performance of an SnS anode in Li-ion batteries: effect of the electrode particle, conductive support shape and additive. RSC Adv. 5, 23671–23682 (2015)CrossRef
35.
Zurück zum Zitat L. Mai, Q. Wei, Q. An, X. Tian, Y. Zhao, X. Xu, L. Xu, L. Chang, Q. Zhang, Nanoscroll buffered hybrid nanostructural VO (B) cathodes for high-rate and long-life lithium storage. Adv. Mater. 25, 2969–2973 (2013)CrossRef L. Mai, Q. Wei, Q. An, X. Tian, Y. Zhao, X. Xu, L. Xu, L. Chang, Q. Zhang, Nanoscroll buffered hybrid nanostructural VO (B) cathodes for high-rate and long-life lithium storage. Adv. Mater. 25, 2969–2973 (2013)CrossRef
36.
Zurück zum Zitat A. Ponrouch, D. Monti, A. Boschin, B. Steen, P. Johansson, M. Palacín, Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 3, 22–42 (2015)CrossRef A. Ponrouch, D. Monti, A. Boschin, B. Steen, P. Johansson, M. Palacín, Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 3, 22–42 (2015)CrossRef
37.
Zurück zum Zitat A. Ponrouch, E. Marchante, M. Courty, J.M. Tarascon, M.R. Palacin, In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 5, 8572–8583 (2012)CrossRef A. Ponrouch, E. Marchante, M. Courty, J.M. Tarascon, M.R. Palacin, In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 5, 8572–8583 (2012)CrossRef
38.
Zurück zum Zitat T. Abe, H. Fukuda, Y. Iriyama, Z. Ogumi, Solvated Li-ion transfer at interface between graphite and electrolyte. J. Electrochem. Soc. 151, A1120–A1123 (2004)CrossRef T. Abe, H. Fukuda, Y. Iriyama, Z. Ogumi, Solvated Li-ion transfer at interface between graphite and electrolyte. J. Electrochem. Soc. 151, A1120–A1123 (2004)CrossRef
39.
Zurück zum Zitat E. Jonsson, P. Johansson, Modern battery electrolytes: ion-ion interactions in Li +/Na + conductors from DFT calculations. Phys. Chem. Chem. Phys. 14, 10774–10779 (2012)CrossRef E. Jonsson, P. Johansson, Modern battery electrolytes: ion-ion interactions in Li +/Na + conductors from DFT calculations. Phys. Chem. Chem. Phys. 14, 10774–10779 (2012)CrossRef
40.
Zurück zum Zitat S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011)CrossRef S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011)CrossRef
Metadaten
Titel
SnS Array for Anode of Na-Ion Battery
verfasst von
Dr. Dongliang Chao
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-3080-3_5