Skip to main content
Erschienen in: Optical and Quantum Electronics 5/2024

01.05.2024

Soliton solutions of the time-fractional Sharma–Tasso–Olver equations arise in nonlinear optics

verfasst von: K. Pavani, K. Raghavendar, K. Aruna

Erschienen in: Optical and Quantum Electronics | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article focuses on the investigation of the time-fractional Sharma–Tasso–Olver equation, a crucial equation with significant relevance in various scientific domains, including nonlinear optics, quantum field theory, and the physical sciences. The natural transform decomposition approach, an efficient and innovative methodology, is used in this study. The two nonsingular kernel derivatives, such as Caputo–Fabrizio and Atangana–Baleanu in the Caputo sense, are used in the suggested technique. We considered two nonlinear cases with suitable initial conditions to show that the proposed method is accurate and works well with the existing methods. Banach’s fixed point theorem is used to demonstrate the uniqueness and convergence of the solution that has been achieved. The proposed solution accurately captures the behaviour of the reported findings for various fractional orders. The obtained outcomes of the suggested approach are contrasted with those of the precise solution and other numerical techniques, including the natural transform decomposition method with Caputo derivative, the natural transform iterative method, the q-homotopy analysis Elzaki transform method, and the fractional reduced differential transform method. The outcomes of the proposed method are presented in tables and figures. The findings of this study demonstrate that the investigated technique is highly effective and precise in solving nonlinear time fractional differential equations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adivi Sri Venkata, R.K., Kirubanandam, A., Kondooru, R.: Numerical solutions of time fractional Sawada Kotera Ito equation via natural transform decomposition method with singular and nonsingular kernel derivatives. Math. Methods Appl. Sci. 44(18), 14025–14040 (2021)ADSMathSciNet Adivi Sri Venkata, R.K., Kirubanandam, A., Kondooru, R.: Numerical solutions of time fractional Sawada Kotera Ito equation via natural transform decomposition method with singular and nonsingular kernel derivatives. Math. Methods Appl. Sci. 44(18), 14025–14040 (2021)ADSMathSciNet
Zurück zum Zitat Ahmad, S., Pak, S., Rahman, M.U., Al-Bossly, A.: On the analysis of a fractional tuberculosis model with the effect of an imperfect vaccine and exogenous factors under the Mittag–Leffler kernel. Fractal Fract. 7(7), 526 (2023) Ahmad, S., Pak, S., Rahman, M.U., Al-Bossly, A.: On the analysis of a fractional tuberculosis model with the effect of an imperfect vaccine and exogenous factors under the Mittag–Leffler kernel. Fractal Fract. 7(7), 526 (2023)
Zurück zum Zitat Akinyemi, L., Şenol, M., Tasbozan, O., Kurt, A.: Multiple-solitons for generalized (2 + 1)-dimensional conformable Korteweg-de Vries–Kadomtsev–Petviashvili equation. J. Ocean Eng. Sci. 7(6), 536–542 (2022) Akinyemi, L., Şenol, M., Tasbozan, O., Kurt, A.: Multiple-solitons for generalized (2 + 1)-dimensional conformable Korteweg-de Vries–Kadomtsev–Petviashvili equation. J. Ocean Eng. Sci. 7(6), 536–542 (2022)
Zurück zum Zitat Aljoudi, S.: Exact solutions of the fractional Sharma–Tasso–Olver equation and the fractional Bogoyavlenskii’s breaking soliton equations. Appl. Math. Comput. 405, 126237 (2021)MathSciNet Aljoudi, S.: Exact solutions of the fractional Sharma–Tasso–Olver equation and the fractional Bogoyavlenskii’s breaking soliton equations. Appl. Math. Comput. 405, 126237 (2021)MathSciNet
Zurück zum Zitat Arafa, A.A., Hagag, A.M.S.: A new analytic solution of fractional coupled Ramani equation. Chin. J. Phys. 60, 388–406 (2019)MathSciNet Arafa, A.A., Hagag, A.M.S.: A new analytic solution of fractional coupled Ramani equation. Chin. J. Phys. 60, 388–406 (2019)MathSciNet
Zurück zum Zitat Arafa, A.A.M., El-Sayed, A.M.A., Hagag, A.M.S.: A fractional Temimi–Ansari method (FTAM) with convergence analysis for solving physical equations. Math. Methods Appl. Sci. 44(8), 6612–6629 (2021)ADSMathSciNet Arafa, A.A.M., El-Sayed, A.M.A., Hagag, A.M.S.: A fractional Temimi–Ansari method (FTAM) with convergence analysis for solving physical equations. Math. Methods Appl. Sci. 44(8), 6612–6629 (2021)ADSMathSciNet
Zurück zum Zitat Atangana, A., Koca, I.: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order. Chaos Solitons Fractals 89, 447–454 (2016)ADSMathSciNet Atangana, A., Koca, I.: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order. Chaos Solitons Fractals 89, 447–454 (2016)ADSMathSciNet
Zurück zum Zitat Çenesiz, Y., Kurt, A., Tasbozan, O.: On the new solutions of the conformable time fractional generalized Hirota–Satsuma coupled KdV system. Ann. West Univ. Timis. Math. Comput. Sci. 55(1), 37–50 (2017)MathSciNet Çenesiz, Y., Kurt, A., Tasbozan, O.: On the new solutions of the conformable time fractional generalized Hirota–Satsuma coupled KdV system. Ann. West Univ. Timis. Math. Comput. Sci. 55(1), 37–50 (2017)MathSciNet
Zurück zum Zitat Du, S., Haq, N.U., Rahman, M.U.: Novel multiple solitons, their bifurcations and high order breathers for the novel extended Vakhnenko–Parkes equation. Results Phys. 54, 107038 (2023) Du, S., Haq, N.U., Rahman, M.U.: Novel multiple solitons, their bifurcations and high order breathers for the novel extended Vakhnenko–Parkes equation. Results Phys. 54, 107038 (2023)
Zurück zum Zitat El-Sayed, A.M.A., Rida, S.Z., Arafa, A.A.M.: On the solutions of the generalized reaction–diffusion model for bacterial colony. Acta Appl. Math. 110, 1501–1511 (2010)MathSciNet El-Sayed, A.M.A., Rida, S.Z., Arafa, A.A.M.: On the solutions of the generalized reaction–diffusion model for bacterial colony. Acta Appl. Math. 110, 1501–1511 (2010)MathSciNet
Zurück zum Zitat Ghanbari, B.: Abundant soliton solutions for the Hirota–Maccari equation via the generalized exponential rational function method. Mod. Phys. Lett. B. 33(09), 1950106 (2019)ADSMathSciNet Ghanbari, B.: Abundant soliton solutions for the Hirota–Maccari equation via the generalized exponential rational function method. Mod. Phys. Lett. B. 33(09), 1950106 (2019)ADSMathSciNet
Zurück zum Zitat Ghanbari, B., Akgül, A.: Abundant new analytical and approximate solutions to the generalized Schamel equation. Phys. Scr. 95(7), 075201 (2020)ADS Ghanbari, B., Akgül, A.: Abundant new analytical and approximate solutions to the generalized Schamel equation. Phys. Scr. 95(7), 075201 (2020)ADS
Zurück zum Zitat Ghanbari, B., Baleanu, D.: New solutions of Gardner’s equation using two analytical methods. Front. Phys. 7, 202 (2019) Ghanbari, B., Baleanu, D.: New solutions of Gardner’s equation using two analytical methods. Front. Phys. 7, 202 (2019)
Zurück zum Zitat Ghanbari, B., Baleanu, D.: New optical solutions of the fractional Gerdjikov–Ivanov equation with conformable derivative. Front. Phys. 8, 167 (2020) Ghanbari, B., Baleanu, D.: New optical solutions of the fractional Gerdjikov–Ivanov equation with conformable derivative. Front. Phys. 8, 167 (2020)
Zurück zum Zitat Ghanbari, B., Gómez-Aguilar, J.F.: New exact optical soliton solutions for nonlinear Schrödinger equation with second-order spatio–temporal dispersion involving M-derivative. Mod. Phys. Lett. B. 33(20), 1950235 (2019)ADS Ghanbari, B., Gómez-Aguilar, J.F.: New exact optical soliton solutions for nonlinear Schrödinger equation with second-order spatio–temporal dispersion involving M-derivative. Mod. Phys. Lett. B. 33(20), 1950235 (2019)ADS
Zurück zum Zitat Ghanbari, B., Gómez-Aguilar, J.F.: Optical soliton solutions for the nonlinear Radhakrishnan–Kundu–Lakshmanan equation. Mod. Phys. Lett. B. 33(32), 1950402 (2019)ADSMathSciNet Ghanbari, B., Gómez-Aguilar, J.F.: Optical soliton solutions for the nonlinear Radhakrishnan–Kundu–Lakshmanan equation. Mod. Phys. Lett. B. 33(32), 1950402 (2019)ADSMathSciNet
Zurück zum Zitat Ghanbari, B., Kuo, C.K.: New exact wave solutions of the variable-coefficient (1 + 1)-dimensional Benjamin–Bona–Mahony and (2 + 1)-dimensional asymmetric Nizhnik–Novikov–Veselov equations via the generalized exponential rational function method. Eur. Phys. J. Plus 134(7), 334 (2019) Ghanbari, B., Kuo, C.K.: New exact wave solutions of the variable-coefficient (1 + 1)-dimensional Benjamin–Bona–Mahony and (2 + 1)-dimensional asymmetric Nizhnik–Novikov–Veselov equations via the generalized exponential rational function method. Eur. Phys. J. Plus 134(7), 334 (2019)
Zurück zum Zitat Ghanbari, B., Baleanu, D., Al Qurashi, M.: New exact solutions of the generalized Benjamin–Bona–Mahony equation. Symmetry 11(1), 20 (2018)ADS Ghanbari, B., Baleanu, D., Al Qurashi, M.: New exact solutions of the generalized Benjamin–Bona–Mahony equation. Symmetry 11(1), 20 (2018)ADS
Zurück zum Zitat Inc, M.: The approximate and exact solutions of the space-and time-fractional Burgers equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 345(1), 476–484 (2008)MathSciNet Inc, M.: The approximate and exact solutions of the space-and time-fractional Burgers equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 345(1), 476–484 (2008)MathSciNet
Zurück zum Zitat Jafari, H., Nazari, M., Baleanu, D., Khalique, C.M.: A new approach for solving a system of fractional partial differential equations. Comput. Math. Appl. 66(5), 838–843 (2013)MathSciNet Jafari, H., Nazari, M., Baleanu, D., Khalique, C.M.: A new approach for solving a system of fractional partial differential equations. Comput. Math. Appl. 66(5), 838–843 (2013)MathSciNet
Zurück zum Zitat Khater, M., Ghanbari, B.: On the solitary wave solutions and physical characterization of gas diffusion in a homogeneous medium via some efficient techniques. Eur. Phys. J. Plus 136(4), 447 (2021) Khater, M., Ghanbari, B.: On the solitary wave solutions and physical characterization of gas diffusion in a homogeneous medium via some efficient techniques. Eur. Phys. J. Plus 136(4), 447 (2021)
Zurück zum Zitat Koppala, P., Kondooru, R.: An efficient technique to solve time-fractional Kawahara and modified Kawahara equations. Symmetry 14(9), 1777 (2022)ADS Koppala, P., Kondooru, R.: An efficient technique to solve time-fractional Kawahara and modified Kawahara equations. Symmetry 14(9), 1777 (2022)ADS
Zurück zum Zitat Li, B., Eskandari, Z.: Dynamical analysis of a discrete-time SIR epidemic model. J. Frankl. Inst. 360(12), 7989–8007 (2023)MathSciNet Li, B., Eskandari, Z.: Dynamical analysis of a discrete-time SIR epidemic model. J. Frankl. Inst. 360(12), 7989–8007 (2023)MathSciNet
Zurück zum Zitat Li, B., Zhang, T., Zhang, C.: Investigation of financial bubble mathematical model under fractal-fractional Caputo derivative. Fractals 31(05), 2350050 (2023)ADS Li, B., Zhang, T., Zhang, C.: Investigation of financial bubble mathematical model under fractal-fractional Caputo derivative. Fractals 31(05), 2350050 (2023)ADS
Zurück zum Zitat Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 87–92 (2015) Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 87–92 (2015)
Zurück zum Zitat Malagi, N.S., et al.: Novel approach for nonlinear time-fractional Sharma–Tasso–Olever equation using Elzaki transform. Int. J. Optim. Control Theor. Appl. IJOCTA 13(1), 46–58 (2023)MathSciNet Malagi, N.S., et al.: Novel approach for nonlinear time-fractional Sharma–Tasso–Olever equation using Elzaki transform. Int. J. Optim. Control Theor. Appl. IJOCTA 13(1), 46–58 (2023)MathSciNet
Zurück zum Zitat Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, Hoboken (1993) Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, Hoboken (1993)
Zurück zum Zitat Moshrefi-Torbati, M., Hammond, J.K.: Physical and geometrical interpretation of fractional operators. J. Frankl. Inst. B 335(6), 1077–1086 (1998)MathSciNet Moshrefi-Torbati, M., Hammond, J.K.: Physical and geometrical interpretation of fractional operators. J. Frankl. Inst. B 335(6), 1077–1086 (1998)MathSciNet
Zurück zum Zitat Nawaz, R., Ali, N., Zada, L., Nisar, K.S., Alharthi, M.R., Jamshed, W.: Extension of natural transform method with Daftardar–Jafari polynomials for fractional order differential equations. Alex. Eng. J. 60(3), 3205–3217 (2021) Nawaz, R., Ali, N., Zada, L., Nisar, K.S., Alharthi, M.R., Jamshed, W.: Extension of natural transform method with Daftardar–Jafari polynomials for fractional order differential equations. Alex. Eng. J. 60(3), 3205–3217 (2021)
Zurück zum Zitat Oldham, K., Spanier, J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order. Elsevier, Amsterdam (1974) Oldham, K., Spanier, J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order. Elsevier, Amsterdam (1974)
Zurück zum Zitat Ovsiannikov, L.V.E.: Group Analysis of Differential Equations, vol. 1, p. 82. Academic Press, New York (1982) Ovsiannikov, L.V.E.: Group Analysis of Differential Equations, vol. 1, p. 82. Academic Press, New York (1982)
Zurück zum Zitat Pan, J., Rahman, M.U.: Breather-like, singular, periodic, interaction of singular and periodic solitons, and a-periodic solitons of third-order nonlinear Schrödinger equation with an efficient algorithm. Eur. Phys. J. Plus 138, 912 (2023) Pan, J., Rahman, M.U.: Breather-like, singular, periodic, interaction of singular and periodic solitons, and a-periodic solitons of third-order nonlinear Schrödinger equation with an efficient algorithm. Eur. Phys. J. Plus 138, 912 (2023)
Zurück zum Zitat Pavani, K., Raghavendar, K.: Approximate solutions of time-fractional Swift–Hohenberg equation via natural transform decomposition method. Int. J. Appl. Comput. 9(3), 29 (2023)MathSciNet Pavani, K., Raghavendar, K.: Approximate solutions of time-fractional Swift–Hohenberg equation via natural transform decomposition method. Int. J. Appl. Comput. 9(3), 29 (2023)MathSciNet
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Zurück zum Zitat Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)MathSciNet Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)MathSciNet
Zurück zum Zitat Prakasha, D.G., Veeresha, P., Rawashdeh, M.S.: Numerical solution for (2 + 1)-dimensional time fractional coupled Burger equations using fractional natural decomposition method. Math. Methods Appl. Sci. 42(10), 3409–3427 (2019)ADSMathSciNet Prakasha, D.G., Veeresha, P., Rawashdeh, M.S.: Numerical solution for (2 + 1)-dimensional time fractional coupled Burger equations using fractional natural decomposition method. Math. Methods Appl. Sci. 42(10), 3409–3427 (2019)ADSMathSciNet
Zurück zum Zitat Ravi Kanth, A.S.V., Aruna, K., Raghavendar, K.: Natural transform decomposition method for the numerical treatment of the time fractional Burgers–Huxley equation. Numer. Methods Partial Differ. Equ. 39(3), 2690–2718 (2023)MathSciNet Ravi Kanth, A.S.V., Aruna, K., Raghavendar, K.: Natural transform decomposition method for the numerical treatment of the time fractional Burgers–Huxley equation. Numer. Methods Partial Differ. Equ. 39(3), 2690–2718 (2023)MathSciNet
Zurück zum Zitat Rawashdeh, M.S.: An efficient approach for time-fractional damped Burger and time-Sharma–Tasso–Olver equations using the FRDTM. Appl. Math. Inf. Sci. 9(3), 1239–1246 (2015)MathSciNet Rawashdeh, M.S.: An efficient approach for time-fractional damped Burger and time-Sharma–Tasso–Olver equations using the FRDTM. Appl. Math. Inf. Sci. 9(3), 1239–1246 (2015)MathSciNet
Zurück zum Zitat Rawashdeh, M., Maitama, S.: Finding exact solutions of nonlinear PDEs using the natural decomposition method. Math. Methods Appl. Sci. 40(1), 223–236 (2017)ADSMathSciNet Rawashdeh, M., Maitama, S.: Finding exact solutions of nonlinear PDEs using the natural decomposition method. Math. Methods Appl. Sci. 40(1), 223–236 (2017)ADSMathSciNet
Zurück zum Zitat Rezazadeh, H., Khodadad, F.S., Manafian, J.: New structure for exact solutions of nonlinear time fractional Sharma–Tasso–Olver equation via conformable fractional derivative. Int. J. Appl. Math. Appl. 12(1), 26 (2017)MathSciNet Rezazadeh, H., Khodadad, F.S., Manafian, J.: New structure for exact solutions of nonlinear time fractional Sharma–Tasso–Olver equation via conformable fractional derivative. Int. J. Appl. Math. Appl. 12(1), 26 (2017)MathSciNet
Zurück zum Zitat Rida, S., Arafa, A., Abedl-Rady, A., Abdl-Rahaim, H.: Fractional physical differential equations via natural transform. Chin. J. Phys. 55(4), 1569–1575 (2017) Rida, S., Arafa, A., Abedl-Rady, A., Abdl-Rahaim, H.: Fractional physical differential equations via natural transform. Chin. J. Phys. 55(4), 1569–1575 (2017)
Zurück zum Zitat Roy, R., Akbar, M.A., Wazwaz, A.M.: Exact wave solutions for the nonlinear time fractional Sharma–Tasso–Olver equation and the fractional Klein–Gordon equation in mathematical physics. Opt. Quantum Electron. 50, 25 (2018) Roy, R., Akbar, M.A., Wazwaz, A.M.: Exact wave solutions for the nonlinear time fractional Sharma–Tasso–Olver equation and the fractional Klein–Gordon equation in mathematical physics. Opt. Quantum Electron. 50, 25 (2018)
Zurück zum Zitat Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, vol. 1. Gordon and Breach Science Publishers, Yverdon-les-Bains (1993) Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, vol. 1. Gordon and Breach Science Publishers, Yverdon-les-Bains (1993)
Zurück zum Zitat Tarasov, V.E.: Geometric interpretation of fractional-order derivative. Fract. Calc. Appl. Anal. 19(5), 1200–1221 (2016)MathSciNet Tarasov, V.E.: Geometric interpretation of fractional-order derivative. Fract. Calc. Appl. Anal. 19(5), 1200–1221 (2016)MathSciNet
Zurück zum Zitat Tasbozan, O., Cenesiz, Y., Kurt, A., Iyiola, O.S.: New analytical solutions and approximate solution of the space-time conformable Sharma–Tasso–Olver equation. Prog. Fract. Differ. 4(4), 519–531 (2018) Tasbozan, O., Cenesiz, Y., Kurt, A., Iyiola, O.S.: New analytical solutions and approximate solution of the space-time conformable Sharma–Tasso–Olver equation. Prog. Fract. Differ. 4(4), 519–531 (2018)
Zurück zum Zitat Tozar, A., Tasbozan, O., Kurt, A.: Optical soliton solutions for the (1 + 1)-dimensional resonant nonlinear Schröndinger’s equation arising in optical fibers. Opt. Quantum Electron. 53(6), 316 (2021) Tozar, A., Tasbozan, O., Kurt, A.: Optical soliton solutions for the (1 + 1)-dimensional resonant nonlinear Schröndinger’s equation arising in optical fibers. Opt. Quantum Electron. 53(6), 316 (2021)
Zurück zum Zitat Uddin, M.H., Khan, M.A., Akbar, M.A., Haque, M.A.: Multi-solitary wave solutions to the general time fractional Sharma–Tasso–Olver equation and the time fractional Cahn–Allen equation. Arab. J. Basic Appl. Sci. 26(1), 193–201 (2019) Uddin, M.H., Khan, M.A., Akbar, M.A., Haque, M.A.: Multi-solitary wave solutions to the general time fractional Sharma–Tasso–Olver equation and the time fractional Cahn–Allen equation. Arab. J. Basic Appl. Sci. 26(1), 193–201 (2019)
Zurück zum Zitat Varol, D.: Solitary and periodic wave solutions of the space-time fractional Extended Kawahara equation. Fractal Fract. 7(7), 539 (2023) Varol, D.: Solitary and periodic wave solutions of the space-time fractional Extended Kawahara equation. Fractal Fract. 7(7), 539 (2023)
Zurück zum Zitat Wang, Q.: Homotopy perturbation method for fractional KdV-Burgers equation. Chaos Solitons Fractals 35(5), 843–850 (2008)ADSMathSciNet Wang, Q.: Homotopy perturbation method for fractional KdV-Burgers equation. Chaos Solitons Fractals 35(5), 843–850 (2008)ADSMathSciNet
Zurück zum Zitat Wang, G.W., Xu, T.Z.: Invariant analysis and exact solutions of nonlinear time fractional Sharma–Tasso–Olver equation by Lie group analysis. Nonlinear Dyn. 76, 571–580 (2014)MathSciNet Wang, G.W., Xu, T.Z.: Invariant analysis and exact solutions of nonlinear time fractional Sharma–Tasso–Olver equation by Lie group analysis. Nonlinear Dyn. 76, 571–580 (2014)MathSciNet
Zurück zum Zitat Wazwaz, A.M.: Integrable couplings of the Burgers equation and the Sharma–Tasso–Olver equation: multiple kink solutions. Rom. Rep. Phys. 65(2), 383–390 (2013) Wazwaz, A.M.: Integrable couplings of the Burgers equation and the Sharma–Tasso–Olver equation: multiple kink solutions. Rom. Rep. Phys. 65(2), 383–390 (2013)
Zurück zum Zitat Yalçınkaya, İ, Ahmad, H., Tasbozan, O., Kurt, A.: Soliton solutions for time fractional ocean engineering models with Beta derivative. J. Ocean Eng. Sci. 7(5), 444–448 (2022) Yalçınkaya, İ, Ahmad, H., Tasbozan, O., Kurt, A.: Soliton solutions for time fractional ocean engineering models with Beta derivative. J. Ocean Eng. Sci. 7(5), 444–448 (2022)
Zurück zum Zitat Zhou, M.X., Kanth, A.S.V., Aruna, K., Raghavendar, K., Rezazadeh, H., Inc, M., Aly, A.A.: Numerical solutions of time fractional Zakharov–Kuznetsov equation via natural transform decomposition method with nonsingular kernel derivatives. J. Funct. Sp. 2021(4), 1–17 (2021). https://doi.org/10.1155/2021/9884027 Zhou, M.X., Kanth, A.S.V., Aruna, K., Raghavendar, K., Rezazadeh, H., Inc, M., Aly, A.A.: Numerical solutions of time fractional Zakharov–Kuznetsov equation via natural transform decomposition method with nonsingular kernel derivatives. J. Funct. Sp. 2021(4), 1–17 (2021). https://​doi.​org/​10.​1155/​2021/​9884027
Metadaten
Titel
Soliton solutions of the time-fractional Sharma–Tasso–Olver equations arise in nonlinear optics
verfasst von
K. Pavani
K. Raghavendar
K. Aruna
Publikationsdatum
01.05.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 5/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-024-06384-w

Weitere Artikel der Ausgabe 5/2024

Optical and Quantum Electronics 5/2024 Zur Ausgabe

Neuer Inhalt