Skip to main content
Erschienen in: Neural Computing and Applications 5/2018

28.07.2016 | Original Article

Solutions of Bagley–Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm with error estimates

verfasst von: Omar Abu Arqub, Banan Maayah

Erschienen in: Neural Computing and Applications | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents iterative reproducing kernel algorithm for obtaining the numerical solutions of Bagley–Torvik and Painlevé equations of fractional order. The representation of the exact and the numerical solutions is given in the \( \hat{W}_{2}^{3} \left[ {0,1} \right] \), \( W_{2}^{3} \left[ {0,1} \right] \), and \( W_{2}^{1} \left[ {0,1} \right] \) inner product spaces. The computation of the required grid points is relying on the \( \hat{R}_{t}^{{\left\{ 3 \right\}}} \left( s \right) \), \( R_{t}^{{\left\{ 3 \right\}}} \left( s \right) \), and \( R_{t}^{{\left\{ 1 \right\}}} \left( s \right) \) reproducing kernel functions. An efficient construction is given to obtain the numerical solutions for the equations together with an existence proof of the exact solutions based upon the reproducing kernel theory. Numerical solutions of such fractional equations are acquired by interrupting the \( n \)-term of the exact solutions. In this approach, numerical examples were analyzed to illustrate the design procedure and confirm the performance of the proposed algorithm in the form of tabulate data, numerical comparisons, and graphical results. Finally, the utilized results show the significant improvement in the algorithm while saving the convergence accuracy and time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial College Press, LondonCrossRefMATH Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial College Press, LondonCrossRefMATH
2.
Zurück zum Zitat Zaslavsky GM (2005) Hamiltonian chaos and fractional dynamics. Oxford University Press, OxfordMATH Zaslavsky GM (2005) Hamiltonian chaos and fractional dynamics. Oxford University Press, OxfordMATH
3.
Zurück zum Zitat Podlubny I (1999) Fractional differential equations. Academic Press, San DiegoMATH Podlubny I (1999) Fractional differential equations. Academic Press, San DiegoMATH
4.
Zurück zum Zitat Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives theory and applications. Gordon and Breach, New YorkMATH Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives theory and applications. Gordon and Breach, New YorkMATH
5.
Zurück zum Zitat Kilbas A, Srivastava H, Trujillo J (2006) Theory and applications of fractional differential equations. Elsevier, AmsterdamMATH Kilbas A, Srivastava H, Trujillo J (2006) Theory and applications of fractional differential equations. Elsevier, AmsterdamMATH
6.
Zurück zum Zitat Bagley RL, Torvik PJ (1984) On the appearance of the fractional derivative in the behavior of real materials. J Appl Mech 51:294–298CrossRefMATH Bagley RL, Torvik PJ (1984) On the appearance of the fractional derivative in the behavior of real materials. J Appl Mech 51:294–298CrossRefMATH
7.
Zurück zum Zitat Bagley RL, Torvik PJ (1983) Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J 21:741–748CrossRefMATH Bagley RL, Torvik PJ (1983) Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J 21:741–748CrossRefMATH
8.
Zurück zum Zitat Ghorbani A, Alavi A (2008) Application of He’s variational iteration method to solve semidifferential equations of nth order. Math Probl Eng. doi:10.1155/2008/627983 MATH Ghorbani A, Alavi A (2008) Application of He’s variational iteration method to solve semidifferential equations of nth order. Math Probl Eng. doi:10.​1155/​2008/​627983 MATH
9.
Zurück zum Zitat Podlubny I, Skovranek T, Jara BMV (2009) Matrix approach to discretization of fractional derivatives and to solution of fractional differential equations and their systems. In: Proceedings of the IEEE conference on emerging technologies and factory automation (ETFA’09), pp 1–6 Podlubny I, Skovranek T, Jara BMV (2009) Matrix approach to discretization of fractional derivatives and to solution of fractional differential equations and their systems. In: Proceedings of the IEEE conference on emerging technologies and factory automation (ETFA’09), pp 1–6
11.
Zurück zum Zitat Fadravi HH, Nik HS, Buzhabadi R (2011) Homotopy analysis method based on optimal value of the convergence control parameter for solving semi-differential equations. J Math Ext 5:105–121MathSciNetMATH Fadravi HH, Nik HS, Buzhabadi R (2011) Homotopy analysis method based on optimal value of the convergence control parameter for solving semi-differential equations. J Math Ext 5:105–121MathSciNetMATH
12.
Zurück zum Zitat Zolfaghari M, Ghaderi R, Eslami AS, Ranjbar A, Hosseinnia SH, Momani S (2009) Sadati J (2009) Application of the enhanced homotopy perturbation method to solve the fractional-order Bagley–Torvik differential equation. Phys Scr T136:014032CrossRef Zolfaghari M, Ghaderi R, Eslami AS, Ranjbar A, Hosseinnia SH, Momani S (2009) Sadati J (2009) Application of the enhanced homotopy perturbation method to solve the fractional-order Bagley–Torvik differential equation. Phys Scr T136:014032CrossRef
13.
Zurück zum Zitat Wang ZH, Wang X (2010) General solution of the Bagley–Torvik equation with fractional-order derivative. Commun Nonlinear Sci Numer Simul 15:1279–1285MathSciNetCrossRefMATH Wang ZH, Wang X (2010) General solution of the Bagley–Torvik equation with fractional-order derivative. Commun Nonlinear Sci Numer Simul 15:1279–1285MathSciNetCrossRefMATH
14.
Zurück zum Zitat Ray SS (2012) On Haar wavelet operational matrix of general order and its application for the numerical solution of fractional Bagley Torvik equation. Appl Math Comput 218:5239–5248MathSciNetMATH Ray SS (2012) On Haar wavelet operational matrix of general order and its application for the numerical solution of fractional Bagley Torvik equation. Appl Math Comput 218:5239–5248MathSciNetMATH
15.
Zurück zum Zitat Yüzbaşi S (2013) Numerical solution of the Bagley–Torvik equation by the Bessel collocation method. Math Methods Appl Sci 36:300–312MathSciNetCrossRefMATH Yüzbaşi S (2013) Numerical solution of the Bagley–Torvik equation by the Bessel collocation method. Math Methods Appl Sci 36:300–312MathSciNetCrossRefMATH
16.
Zurück zum Zitat Cenesiz Y, Keskin Y, Kurnaz A (2010) The solution of the Bagley–Torvik equation with the generalized Taylor collocation method. J Frankl Inst 347:452–466MathSciNetCrossRefMATH Cenesiz Y, Keskin Y, Kurnaz A (2010) The solution of the Bagley–Torvik equation with the generalized Taylor collocation method. J Frankl Inst 347:452–466MathSciNetCrossRefMATH
17.
Zurück zum Zitat Hesameddini E, Peyrovi A (2009) The use of variational iteration method and homotopy perturbation method for Painlevé equation I. Appl Math Sci 3:1861–1871MATH Hesameddini E, Peyrovi A (2009) The use of variational iteration method and homotopy perturbation method for Painlevé equation I. Appl Math Sci 3:1861–1871MATH
18.
Zurück zum Zitat Raja MAZ, Khan JA, Ahmad SUL, Qureshi IM (2012) A new stochastic technique for Painlevé equation-I using neural network optimized with swarm intelligence. Comput Intell Neurosci. doi:10.1155/2012/721867 Raja MAZ, Khan JA, Ahmad SUL, Qureshi IM (2012) A new stochastic technique for Painlevé equation-I using neural network optimized with swarm intelligence. Comput Intell Neurosci. doi:10.​1155/​2012/​721867
19.
Zurück zum Zitat Raja MAZ, Khan JA, Shah SM, Samar R, Behloul D (2015) Comparison of three unsupervised neural network models for first Painlevé transcendent. Neural Comput Appl 26:1055–1071CrossRef Raja MAZ, Khan JA, Shah SM, Samar R, Behloul D (2015) Comparison of three unsupervised neural network models for first Painlevé transcendent. Neural Comput Appl 26:1055–1071CrossRef
20.
Zurück zum Zitat Dehghan M, Shakeri F (2009) The numerical solution of the second Painlevé equation. Numer Methods Partial Differ Equ 25:1238–1259CrossRefMATH Dehghan M, Shakeri F (2009) The numerical solution of the second Painlevé equation. Numer Methods Partial Differ Equ 25:1238–1259CrossRefMATH
22.
Zurück zum Zitat Raja MAZ, Khan JA, Siddiqui AM, Behloul D, Haroon T, Samar R (2015) Exactly satisfying initial conditions neural network models for numerical treatment of first Painlevé equation. Appl Soft Comput 26:244–256CrossRef Raja MAZ, Khan JA, Siddiqui AM, Behloul D, Haroon T, Samar R (2015) Exactly satisfying initial conditions neural network models for numerical treatment of first Painlevé equation. Appl Soft Comput 26:244–256CrossRef
23.
24.
Zurück zum Zitat Fornberg B, Weideman JAC (2015) A computational overview of the solution space of the imaginary Painlevé II equation. Phys D 309:108–118MathSciNetCrossRefMATH Fornberg B, Weideman JAC (2015) A computational overview of the solution space of the imaginary Painlevé II equation. Phys D 309:108–118MathSciNetCrossRefMATH
25.
Zurück zum Zitat Hesameddini E, Latifizadeh H (2012) Homotopy analysis method to obtain numerical solutions of the Painlevé equations. Math Methods Appl Sci 35:1423–1433MathSciNetCrossRefMATH Hesameddini E, Latifizadeh H (2012) Homotopy analysis method to obtain numerical solutions of the Painlevé equations. Math Methods Appl Sci 35:1423–1433MathSciNetCrossRefMATH
26.
Zurück zum Zitat Cui M, Lin Y (2009) Nonlinear numerical analysis in the reproducing kernel space. Nova Science, New YorkMATH Cui M, Lin Y (2009) Nonlinear numerical analysis in the reproducing kernel space. Nova Science, New YorkMATH
27.
Zurück zum Zitat Berlinet A, Agnan CT (2004) Reproducing kernel Hilbert space in probability and statistics. Kluwer Academic Publishers, BostonCrossRefMATH Berlinet A, Agnan CT (2004) Reproducing kernel Hilbert space in probability and statistics. Kluwer Academic Publishers, BostonCrossRefMATH
28.
Zurück zum Zitat Daniel A (2003) Reproducing kernel spaces and applications. Springer, BaselMATH Daniel A (2003) Reproducing kernel spaces and applications. Springer, BaselMATH
29.
Zurück zum Zitat Weinert HL (1982) Reproducing kernel Hilbert spaces: applications in statistical signal processing. Hutchinson Ross, Stroudsburg Weinert HL (1982) Reproducing kernel Hilbert spaces: applications in statistical signal processing. Hutchinson Ross, Stroudsburg
30.
Zurück zum Zitat Lin Y, Cui M, Yang L (2006) Representation of the exact solution for a kind of nonlinear partial differential equations. Appl Math Lett 19:808–813MathSciNetCrossRefMATH Lin Y, Cui M, Yang L (2006) Representation of the exact solution for a kind of nonlinear partial differential equations. Appl Math Lett 19:808–813MathSciNetCrossRefMATH
31.
Zurück zum Zitat Wu B, Li X (2010) Iterative reproducing kernel method for nonlinear oscillator with discontinuity. Appl Math Lett 23:1301–1304MathSciNetCrossRefMATH Wu B, Li X (2010) Iterative reproducing kernel method for nonlinear oscillator with discontinuity. Appl Math Lett 23:1301–1304MathSciNetCrossRefMATH
32.
Zurück zum Zitat Abu Arqub O, Al-Smadi M, Shawagfeh N (2013) Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl Math Comput 219:8938–8948MathSciNetMATH Abu Arqub O, Al-Smadi M, Shawagfeh N (2013) Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl Math Comput 219:8938–8948MathSciNetMATH
33.
Zurück zum Zitat Abu Arqub O, Al-Smadi M (2014) Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl Math Comput 243:911–922MathSciNetMATH Abu Arqub O, Al-Smadi M (2014) Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl Math Comput 243:911–922MathSciNetMATH
34.
Zurück zum Zitat Momani S, Abu Arqub O, Hayat T, Al-Sulami H (2014) A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm–Voltera type. Appl Math Comput 240:229–239MathSciNetMATH Momani S, Abu Arqub O, Hayat T, Al-Sulami H (2014) A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm–Voltera type. Appl Math Comput 240:229–239MathSciNetMATH
35.
Zurück zum Zitat Abu Arqub O, Al-Smadi M, Momani S, Hayat T (2015) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. doi:10.1007/s00500-015-1707-4 MATH Abu Arqub O, Al-Smadi M, Momani S, Hayat T (2015) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. doi:10.​1007/​s00500-015-1707-4 MATH
36.
Zurück zum Zitat Abu Arqub O (2015) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput Appl. doi:10.1007/s00521-015-2110-x Abu Arqub O (2015) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput Appl. doi:10.​1007/​s00521-015-2110-x
38.
Zurück zum Zitat Abu Arqub O (2016) Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm. Fundam Inform 145:1–24MathSciNetCrossRefMATH Abu Arqub O (2016) Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm. Fundam Inform 145:1–24MathSciNetCrossRefMATH
39.
Zurück zum Zitat Geng FZ, Qian SP (2015) Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl Math Modell 39:5592–5597MathSciNetCrossRef Geng FZ, Qian SP (2015) Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl Math Modell 39:5592–5597MathSciNetCrossRef
40.
Zurück zum Zitat Jiang W, Chen Z (2013) Solving a system of linear Volterra integral equations using the new reproducing kernel method. Appl Math Comput 219:10225–10230MathSciNetMATH Jiang W, Chen Z (2013) Solving a system of linear Volterra integral equations using the new reproducing kernel method. Appl Math Comput 219:10225–10230MathSciNetMATH
41.
Zurück zum Zitat Wang WY, Han B, Yamamoto M (2013) Inverse heat problem of determining time-dependent source parameter in reproducing kernel space. Nonlinear Anal Real World Appl 14:875–887MathSciNetCrossRefMATH Wang WY, Han B, Yamamoto M (2013) Inverse heat problem of determining time-dependent source parameter in reproducing kernel space. Nonlinear Anal Real World Appl 14:875–887MathSciNetCrossRefMATH
42.
Zurück zum Zitat Geng FZ, Qian SP (2013) Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers. Appl Math Lett 26:998–1004MathSciNetCrossRefMATH Geng FZ, Qian SP (2013) Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers. Appl Math Lett 26:998–1004MathSciNetCrossRefMATH
43.
Zurück zum Zitat Jiang W, Chen Z (2014) A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation. Numer Methods Partial Differ Equ 30:289–300MathSciNetCrossRefMATH Jiang W, Chen Z (2014) A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation. Numer Methods Partial Differ Equ 30:289–300MathSciNetCrossRefMATH
44.
Zurück zum Zitat Geng FZ, Qian SP, Li S (2014) A numerical method for singularly perturbed turning point problems with an interior layer. J Comput Appl Math 255:97–105MathSciNetCrossRefMATH Geng FZ, Qian SP, Li S (2014) A numerical method for singularly perturbed turning point problems with an interior layer. J Comput Appl Math 255:97–105MathSciNetCrossRefMATH
Metadaten
Titel
Solutions of Bagley–Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm with error estimates
verfasst von
Omar Abu Arqub
Banan Maayah
Publikationsdatum
28.07.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 5/2018
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2484-4

Weitere Artikel der Ausgabe 5/2018

Neural Computing and Applications 5/2018 Zur Ausgabe

Neural Computing in Next Generation Virtual Reality Technology

Medical image semantic segmentation based on deep learning

Neural Computing in Next Generation Virtual Reality Technology

Lip segmentation using localized active contour model with automatic initial contour