Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2014

Open Access 01.12.2014 | Research

Some Bonnesen-style Minkowski inequalities

verfasst von: Wenxue Xu, Chunna Zeng, Jiazu Zhou

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2014

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we obtain some Bonnesen-style Minkowski inequalities of mixed volumes of convex bodies K and L in the Euclidean space R n . Let L be the unit ball; we get some better Bonnesen-style isoperimetric inequalities than Dinghas’s result for  n 3 .
MSC:52A20, 52A40.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors read and approved the final manuscript.

1 Introduction

It is well known that the ball has the maximum volume among bodies of fixed surface area in the Euclidean space R n . That is, of all domains K with surface area S ( K ) and volume V ( K ) (cf. [1, 2]),
S ( K ) n n n ω n V ( K ) n 1 0 ,
(1)
with equality if and only if K is a ball. Here ω n denotes the volume of the unit ball,
ω n = 2 π n / 2 n Γ ( n / 2 ) ,
where Γ ( ) is the Gamma function.
The isoperimetric deficit
Δ n ( K ) = S ( K ) n n n ω n V ( K ) n 1
(2)
measures the deficit between the domain K and a ball of radius ( S ( K ) / n ω n ) 1 / ( n 1 ) . A Bonnesen-style isoperimetric inequality is of the form (cf. [24])
Δ n ( K ) = S ( K ) n n n ω n V ( K ) n 1 B K ,
(3)
where the quantity B K is a non-negative invariant of geometric significance of K and vanishes only when K is a ball.
Bonnesen himself proved several inequalities of the form (3) in the Euclidean plane (cf. [5, 6]), but he was not able to obtain direct generalizations of his two-dimensional results. This was done much later, first by Hadwiger [7] for n = 3 , and then by Dinghas [8] for arbitrary dimension. From then on, some Bonnesen-style inequalities in the higher dimensions and generalizations have been obtained by Osserman (cf. [1, 2]), Santaló (cf. [9]), Groemer and Schneider (cf. [10]), Zhang (cf. [11]), Zhou (cf. [4, 12]) and others. See references [1336] for more details. The following well-known Bonnesen-style inequality for a convex body K in the Euclidean space R n is due to Dinghas (cf. [8]):
S ( K ) n n n ω n V ( K ) n 1 ( S ( K ) 1 / ( n 1 ) ( n ω n ) 1 / ( n 1 ) r ) n ( n 1 ) ,
(4)
where r is the in-radius of K, and equality holds if and only if K is a ball.
In [11], some different forms of Bonnesen-style isoperimetric inequalities have been established associated with the mean width of K. Zhang obtained (cf. [11])
( M ( K ) 2 ) n / ( n 1 ) ( V ( K ) ω n ) 1 / ( n 1 ) ( V ( K ) ω n ) n / ( n 1 ) ( ( V ( K ) ω n ) 1 / n R 1 ) ,
where M ( K ) and R are the mean width and out-radius of K, respectively.
The Minkowski inequality of mixed volume is a natural generalization of the isoperimetric inequality (1) in the Euclidean space R n (cf. [27, 3739]). Let K, L be convex bodies in R n , then
V 1 ( K , L ) n V ( K ) n 1 V ( L ) ,
(5)
where V 1 ( K , L ) is the mixed volume of K and L and the equality holds if and only if K and L are homothetic.
Motivated by (2), we define the Minkowski homothetic deficit as
Δ n ( K , L ) = V 1 ( K , L ) n V ( K ) n 1 V ( L ) .
(6)
The Minkowski homothetic deficit Δ n ( K , L ) measures the homothety between K and L. Then a Bonnesen-style Minkowski inequality would be of the form
Δ n ( K , L ) = V 1 ( K , L ) n V ( K ) n 1 V ( L ) B K , L ,
(7)
where the quantity B K , L is an invariant of geometric significance about K and L with the following basic properties:
1.
B K , L is non-negative;
 
2.
B K , L vanishes only when K and L are homothetic.
 
Note that let L be the unit ball B and by S ( K ) = n V 1 ( K , B ) , the surface area of K, then the Minkowski homothetic deficit is just the isoperimetric deficit. Therefore, the Bonnesen-style Minkowski inequality (7) is more general than the Bonnesen-style isoperimetric inequality (3).
In this paper, we focus on Bonnesen-style Minkowski inequalities of type (7). Some B K , L are obtained. Let L be the unit ball; then we obtain stronger Bonnesen-style isoperimetric inequalities K than (4).

2 Preliminaries

A set of points K in the Euclidean space R n is convex if for all x , y K and 0 λ 1 , λ x + ( 1 λ ) y K . A domain is a set with nonempty interiors. A convex body is a compact convex domain. The set of convex bodies in R n is denoted by K n . Let K o n be the class of members of K n containing the origin in their interiors. Write V for an n-dimensional Lebesgue measure and H n 1 for an ( n 1 ) -dimensional Hausdorff measure. S n 1 denotes the surface of the unit ball in R n .
A convex body K R n is uniquely determined by its support function h K : R n R , where h K ( x ) = max { x y : y K } , for x R n . For the support function of the dilate c K = { c x : x K } of a convex body K we have
h c K = c h K , c > 0 .
(8)
Note that support functions are positively homogeneous of degree one and subadditive. It follows immediately from the definition of support functions that for convex bodies K and L
K L h K h L .
(9)
For a convex body K and each Borel set ω S n 1 , the reverse spherical image τ ( K , ω ) , of K at ω is the set of all boundary points of K which have an outer unit normal belonging to the set ω. Associated with each convex body K K o n there is a Borel measure S K on S n 1 called the Aleksandrov-Fenchel surface area measure of K, defined by
S K ( ω ) = H n 1 ( τ ( K , ω ) ) ,
for each Borel set ω S n 1 . Observe that for the surface area measure of the dilate cK of K we have
S c K = c n 1 S K , c > 0 .
The Minkowski sum of convex sets K 1 , , K m in R n is defined by
K 1 + + K m = { x 1 + + x m : x 1 K 1 , , x m K m } .
The mixed volume V ( K 1 , , K n ) of compact convex sets K 1 , , K n in R n is defined by
V ( K 1 , , K n ) = 1 n ! j = 1 n ( 1 ) n + j i 1 < < i k V ( K i 1 + + K i k ) .
The Aleksandrov-Fenchel inequality about the i th mixed volume is
V i ( K 1 , K 2 ) 2 V i + 1 ( K 1 , K 2 ) V i 1 ( K 1 , K 2 ) ,
(10)
where
V i ( K 1 , K 2 ) = V ( K 1 , , K 1 n i , K 2 , , K 2 i )
with K 1 appears n i times and K 2 appears i times and (10) holds as an equality if and only if K and L are homothetic.
Note that
V n ( K 1 , K 2 ) = V ( K 2 ) , V 0 ( K 1 , K 2 ) = V ( K 1 ) .
(11)
The following inequality for mixed volumes is the general Aleksandrov-Fenchel inequality: Let K 1 , , K n K and 1 m n . Then
V ( K 1 , , K n ) m i = 1 m V ( K i , , K i , K m + 1 , , K n ) .
Hence
V 1 ( K 1 , K 2 ) n 1 V ( K 1 ) n 2 V n 1 ( K 1 , K 2 ) .
(12)
Let K 2 = B , then V i ( K 1 , B ) = W i ( K 1 ) , the i th quermassintegral of the convex body K 1 .
The mixed volume has monotonicity: If K 1 K 1 , then
V ( K 1 , K 2 , , K n ) V ( K 1 , K 2 , , K n ) .
The mixed volume V 1 ( K , L ) of the convex bodies K , L K o n has the integral form
V 1 ( K , L ) = 1 n S n 1 h L d S K .
(13)
Since
V ( K ) = V 1 ( K , K ) ,
we have
V ( K ) = 1 n S n 1 h K d S K .
If B is the unit ball, then
n V 1 ( K , B ) = S ( K ) ,
the surface area of K. The mean width M ( K ) of K is
M ( K ) = 2 ω n V 1 ( B , K ) ,
that is,
M ( K ) = 2 n ω n S n 1 h K d S K .
The in-radius r ( K , L ) , out-radius R ( K , L ) of K with respect to L are, respectively, defined by
r ( K , L ) = sup { λ : x R n  and  x + λ L K } , R ( K , L ) = inf { λ : x R n  and  K x + λ L } .
Notice that always
r ( K , L ) R ( L , K ) = 1 .
When L is the unit ball, r ( K , L ) and R ( K , L ) are the radius of maximal inscribed and minimal circumscribed balls of K, respectively.

3 Bonnesen-style Minkowski inequalities associated with r ( K , L )

In this section, we derive some Bonnesen-style Minkowski inequalities associated with in-radius r ( K , L ) of K with respect to L. In [26], Diskant improved the Minkowski inequality of mixed volumes as follows.
Lemma 1 Let K, L be convex bodies in the Euclidean space R n , then
V 1 ( K , L ) n / ( n 1 ) V ( K ) V ( L ) 1 / ( n 1 ) ( V 1 ( K , L ) 1 / ( n 1 ) r ( K , L ) V ( L ) 1 / ( n 1 ) ) n ,
(14)
with equality if and only if K is homothetic to L.
Note that the right-hand side of (14) is non-negative for x + r ( K , L ) L K ( x R n ). By (13) we have
V 1 ( K , L ) = 1 n S n 1 h L d S K 1 n S n 1 h L d S r ( K , L ) L r ( K , L ) n 1 V ( L ) .
From Lemma 1 and using the inequality x n 1 y n 1 ( x y ) n 1 (for x y 0 ), a lower bound of the Minkowski deficit follows (cf. [26, 27]).
Proposition 1 Let K, L be convex bodies in the Euclidean space R n , then
Δ n ( K , L ) ( V 1 ( K , L ) 1 / ( n 1 ) r ( K , L ) V ( L ) 1 / ( n 1 ) ) n ( n 1 ) ,
(15)
where the inequality holds as an equality if and only if K and L are homothetic.
The following Bonnesen-style Minkowski inequality is stronger than (15) for n = 3 .
Theorem 1 Let K, L be convex bodies in the Euclidean space R 3 , then
Δ 3 ( K , L ) ( V 1 ( K , L ) 1 / 2 r ( K , L ) V ( L ) 1 / 2 ) 6 + 2 r ( K , L ) 3 V ( L ) 3 / 2 ( V 1 ( K , L ) 1 / 2 r ( K , L ) V ( L ) 1 / 2 ) 3 ,
(16)
with equality if and only if K is homothetic to L.
Proof Since V ( K ) r ( K , L ) 3 V ( L ) and by x 3 y 3 ( x y ) 3 (for x y 0 ), we have
V 1 ( K , L ) 3 / 2 + V ( K ) V ( L ) 1 / 2 V 1 ( K , L ) 3 / 2 + r ( K , L ) 3 V ( L ) 3 / 2 = V 1 ( K , L ) 3 / 2 ( r ( K , L ) V ( L ) 1 / 2 ) 3 + 2 r ( K , L ) 3 V ( L ) 3 / 2 ( V 1 ( K , L ) 1 / 2 r ( K , L ) V ( L ) 1 / 2 ) 3 + 2 r ( K , L ) 3 V ( L ) 3 / 2 .
Note that (14) can be rewritten as
V 1 ( K , L ) 3 / 2 V ( K ) V ( L ) 1 / 2 ( V 1 ( K , L ) 1 / 2 r ( K , L ) V ( L ) 1 / 2 ) 3 .
Multiplying by V 1 ( K , L ) 3 / 2 + V ( K ) V ( L ) 1 / 2 on both sides, we have
V 1 ( K , L ) 3 V ( K ) 2 V ( L ) ( V 1 ( K , L ) 1 / 2 r ( K , L ) V ( L ) 1 / 2 ) 3 ( V 1 ( K , L ) 3 / 2 + V ( K ) V ( L ) 1 / 2 ) .
By these inequalities, we complete the proof of the theorem. □
Let L be the unit ball and notice S ( K ) = 3 V 1 ( K , B ) in (16), we obtain the following Bonnesen-style isoperimetric inequality that strengthens Dinghas’s inequality (4) for n = 3 .
Corollary 1 Let K be a convex body in R 3 and r be the in-radius of K, then
Δ 3 ( K ) ( S ( K ) 1 / 2 ( 4 π ) 1 / 2 r ) 6 + 16 π 3 / 2 r 3 ( S ( K ) 1 / 2 ( 4 π ) 1 / 2 r ) 3 ,
(17)
with equality if and only if K is a ball.
For n 4 , we obtain a stronger Bonnesen-style Minkowski inequality as follows.
Theorem 2 Let K, L be convex bodies in the Euclidean space R n ( n 4 ), then
Δ n ( K , L ) ( V 1 ( K , L ) 1 / ( n 1 ) r ( K , L ) V ( L ) 1 / ( n 1 ) ) n ( n 1 ) + 2 ( r ( K , L ) V ( L ) 1 / ( n 1 ) ) n ( n 2 ) ( V 1 ( K , L ) 1 / ( n 1 ) r ( K , L ) V ( L ) 1 / ( n 1 ) ) n + ( V 1 ( K , L ) V ( L ) ) n / ( n 1 ) r ( K , L ) n ( V 1 ( K , L ) 1 / ( n 1 ) r ( K , L ) V ( L ) 1 / ( n 1 ) ) n ( n 3 ) ,
with equality if and only if K is homothetic to L.
Proof Let p = V 1 ( K , L ) n / ( n 1 ) and q = V ( L ) n / ( n 1 ) r ( K , L ) n , then p q .
i = 2 n ( V 1 ( K , L ) n ( n i ) / ( n 1 ) ( V ( K ) n 1 V ( L ) ) ( i 2 ) / ( n 1 ) ) i = 2 n ( V 1 ( K , L ) n ( n i ) / ( n 1 ) ( V ( L ) 1 / ( n 1 ) r ( K , L ) ) n ( i 2 ) ) = ( p n 2 q n 2 ) + p q ( p n 4 + p n 5 q + + p n i q i 4 + + q n 4 ) + 2 q n 2 = ( p n 2 q n 2 ) + p q p n 3 q n 3 p q + 2 q n 2 ( p q ) n 2 + p q ( p q ) n 4 + 2 q n 2 ( p 1 / n q 1 / n ) n ( n 2 ) + p q ( p 1 / n q 1 / n ) n ( n 4 ) + 2 q n 2 .
That is,
i = 2 n ( V 1 ( K , L ) n ( n i ) / ( n 1 ) ( V ( K ) n 1 V ( L ) ) ( i 2 ) / ( n 1 ) ) ( V 1 ( K , L ) 1 / ( n 1 ) V ( L ) 1 / ( n 1 ) r ( K , L ) ) n ( n 2 ) + 2 ( V ( L ) 1 / ( n 1 ) r ( K , L ) ) n ( n 2 ) + ( V 1 ( K , L ) V ( L ) ) n / ( n 1 ) r ( K , L ) n ( V 1 ( K , L ) 1 / ( n 1 ) V ( L ) 1 / ( n 1 ) r ( K , L ) ) n ( n 4 ) .
Multiplying by i = 2 n ( V 1 ( K , L ) n ( n i ) / n 1 ( V ( K ) n 1 V ( L ) ) ( i 2 ) / ( n 1 ) ) both sides of (14) and via the formula
a n 1 b n 1 = ( a b ) ( a n 2 + a n 3 b + + a n i b i 2 + + a b n 3 + b n 2 ) ,
we obtain
V 1 ( K , L ) n V ( K ) n 1 V ( L ) ( V 1 ( K , L ) 1 / ( n 1 ) r ( K , L ) V ( L ) 1 / ( n 1 ) ) n × ( i = 2 n ( V 1 ( K , L ) n ( n i ) / ( n 1 ) ( V ( K ) n 1 V ( L ) ) ( i 2 ) / ( n 1 ) ) ) .
We complete the proof of Theorem 2. □
Let L be the unit ball and by S ( K ) = n V 1 ( K , B ) in Theorem 2; we obtain the following stronger Bonnesen-style isoperimetric inequality than Dinghas’s inequality (4) for n 4 .
Corollary 2 Let K be a convex body in R n ( n 4 ) and r be the in-radius of K, then
Δ n ( K ) ( S ( K ) 1 / ( n 1 ) ( n ω n ) 1 / ( n 1 ) r ) n ( n 1 ) + 2 ( ( n ω n ) 1 / ( n 1 ) r ) n ( n 2 ) ( S ( K ) 1 / ( n 1 ) ( n ω n ) 1 / ( n 1 ) r ) n + ( n ω n S ( K ) ) n / ( n 1 ) r n ( S ( K ) 1 / ( n 1 ) ( n ω n ) 1 / ( n 1 ) r ) n ( n 3 ) ,
with equality if and only if K is a ball.

4 Bonnesen-style Minkowski inequalities associated with the mean width

In this section, we derive some Bonnesen-style Minkowski inequalities associated with the mean width.
Lemma 2 Let K, L be convex bodies in R n , then
V 0 ( K , L ) V 1 ( K , L ) ( V 0 ( K , L ) V n ( K , L ) ) 1 / n V n 1 ( K , L ) V n ( K , L ) V 1 ( K , L ) n 1 V ( K ) n 2 V ( L ) ,
(18)
with equality if and only if K and L are homothetic.
Proof By inequality (12), we have
V n 1 ( K , L ) V ( L ) V 1 ( K , L ) n 1 V ( K ) n 2 V ( L ) .
By the Aleksandrov-Fenchel inequality (10) we have
V 0 ( K , L ) V 1 ( K , L ) V 1 ( K , L ) V 2 ( K , L ) V i ( K , L ) V i + 1 ( K , L ) V n 1 ( K , L ) V n ( K , L ) .
Therefore
V 0 ( K , L ) V 1 ( K , L ) ( V 0 ( K , L ) V n ( K , L ) ) 1 / n V n 1 ( K , L ) V n ( K , L ) .
 □
Theorem 3 Let K, L be convex bodies in R n , then
Δ n ( K , L ) V ( K ) n 2 V ( L ) V 1 ( K , L ) ( V n 1 ( K , L ) V n ( K , L ) ( V 0 ( K , L ) V n ( K , L ) ) 1 / n ) ,
(19)
with equality if and only if K and L are homothetic.
Proof Via (18), we have
V 1 ( K , L ) n 1 V ( K ) n 2 V ( L ) V 0 ( K , L ) V 1 ( K , L ) V n 1 ( K , L ) V n ( K , L ) ( V 0 ( K , L ) V n ( K , L ) ) 1 / n .
That is
V 1 ( K , L ) n V ( K ) n 1 V ( L ) V ( K ) n 2 V ( L ) V 1 ( K , L ) ( V n 1 ( K , L ) V n ( K , L ) ( V 0 ( K , L ) V n ( K , L ) ) 1 / n ) .
 □
The following Bonnesen-style inequality is a direct consequence of Theorem 3.
Theorem 4 Let K be a convex body in R n , then
Δ n ( K ) n n 1 ω n S ( K ) V ( K ) n 2 ( M ( K ) 2 ( V ( K ) ω n ) 1 / n ) ,
with equality if and only if K is a ball.
Lemma 3 Let K, L be convex bodies in R n , then
V 1 ( K , L ) n 1 V 1 ( K , L ) n 2 ( V 1 ( K , L ) n V ( K ) n 1 V ( L ) ) V ( K ) n 2 V ( L ) V 0 ( K , L ) V 1 ( K , L ) V n 1 ( K , L ) V n ( K , L ) V 1 ( K , L ) n 1 V ( K ) n 2 V ( L ) .
(20)
Proof The Minkowski inequality (5) gives
V 1 ( K , L ) n 1 V 1 ( K , L ) n 2 ( V 1 ( K , L ) n V ( K ) n 1 V ( L ) ) V ( K ) n 2 V ( L ) V 0 ( K , L ) V 1 ( K , L ) .
The above inequality together with (18) leads to Lemma 3. □
We are now in a position to prove the following Bonnesen-style Minkowski inequality.
Theorem 5 Let K, L be convex bodies in R n , then
Δ n ( K , L ) V ( K ) 2 n 4 V ( L ) 2 V 1 ( K , L ) n 2 ( V n 1 ( K , L ) V n ( K , L ) V 0 ( K , L ) V 1 ( K , L ) ) 2 ,
(21)
with equality if and only if K and L are homothetic.
Proof From (20) we have
V 1 ( K , L ) n 2 ( V 1 ( K , L ) n V ( K ) n 1 V ( L ) ) V ( K ) n 2 V ( L ) V n 1 ( K , L ) V n ( K , L ) V 0 ( K , L ) V 1 ( K , L ) .
 □
The following Bonnesen-style inequality is a direct consequence of Theorem 5 when L is the unit ball.
Theorem 6 Let K be a convex body in R n , then
S ( K ) n n n ω n V ( K ) n 1 n 2 n 2 ω n 2 V 2 n 4 S n 2 ( M ( K ) 2 n V ( K ) S ( K ) ) 2 ,
with equality if and only if K is a ball.

Acknowledgements

The authors would like to thank two anonymous referees for many helpful comments and suggestions that directly lead to the improvement of the original manuscript. The authors are supported in part by NSFC (No. 11271302 and No. 11326073), Fundamental Research Funds for the Central Universities (No. XDJK2014C164), the Ph.D. Program of Higher Education Research Funds (No. 2012182110020).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors read and approved the final manuscript.
Literatur
3.
4.
Zurück zum Zitat Zhou J, Du Y, Cheng F: Some Bonnesen-style inequalities for higher dimensions. Acta Math. Sin. 2012,28(12):2561-2568. 10.1007/s10114-012-9657-6MathSciNetCrossRefMATH Zhou J, Du Y, Cheng F: Some Bonnesen-style inequalities for higher dimensions. Acta Math. Sin. 2012,28(12):2561-2568. 10.1007/s10114-012-9657-6MathSciNetCrossRefMATH
5.
Zurück zum Zitat Bonnesen T: Les probléms des isopérimétres et des isépiphanes. Gauthier-Villars, Paris; 1929.MATH Bonnesen T: Les probléms des isopérimétres et des isépiphanes. Gauthier-Villars, Paris; 1929.MATH
6.
Zurück zum Zitat Bonnesen T, Fenchel W: Theorie der konvexen. Köerper, Berlin; 1934. 2nd edn. 1974 2nd edn. 1974CrossRefMATH Bonnesen T, Fenchel W: Theorie der konvexen. Köerper, Berlin; 1934. 2nd edn. 1974 2nd edn. 1974CrossRefMATH
8.
Zurück zum Zitat Dinghas A: Bemerkung zu einer Verschärfung der isoperimetrischen Ungleichung durch H. Hadwiger. Math. Nachr. 1948, 1: 284-286. 10.1002/mana.19480010503MathSciNetCrossRefMATH Dinghas A: Bemerkung zu einer Verschärfung der isoperimetrischen Ungleichung durch H. Hadwiger. Math. Nachr. 1948, 1: 284-286. 10.1002/mana.19480010503MathSciNetCrossRefMATH
9.
Zurück zum Zitat Santaló LA: Integral Geometry and Geometric Probability. Addison-Wesley, Reading; 1976.MATH Santaló LA: Integral Geometry and Geometric Probability. Addison-Wesley, Reading; 1976.MATH
10.
Zurück zum Zitat Groemer H, Schneider R: Stability estimates for some geometric inequalities. Bull. Lond. Math. Soc. 1991, 23: 67-74. 10.1112/blms/23.1.67MathSciNetCrossRefMATH Groemer H, Schneider R: Stability estimates for some geometric inequalities. Bull. Lond. Math. Soc. 1991, 23: 67-74. 10.1112/blms/23.1.67MathSciNetCrossRefMATH
11.
Zurück zum Zitat Zhang G: Geometric inequalities and inclusion measures of convex bodies. Mathematika 1994, 41: 95-116. 10.1112/S0025579300007208MathSciNetCrossRefMATH Zhang G: Geometric inequalities and inclusion measures of convex bodies. Mathematika 1994, 41: 95-116. 10.1112/S0025579300007208MathSciNetCrossRefMATH
12.
Zurück zum Zitat Zhou J, Ren D: Geometric inequalities from the viewpoint of integral geometry. Acta Math. Sci. Ser. A Chin. Ed. 2010, 30: 1322-1339.MathSciNetMATH Zhou J, Ren D: Geometric inequalities from the viewpoint of integral geometry. Acta Math. Sci. Ser. A Chin. Ed. 2010, 30: 1322-1339.MathSciNetMATH
13.
Zurück zum Zitat Zeng C, Ma L, Zhou J, Chen F: The Bonnesen isoperimetric inequality in a surface of constant curvature. Sci. China Math. 2012,55(9):1913-1919. 10.1007/s11425-012-4405-zMathSciNetCrossRefMATH Zeng C, Ma L, Zhou J, Chen F: The Bonnesen isoperimetric inequality in a surface of constant curvature. Sci. China Math. 2012,55(9):1913-1919. 10.1007/s11425-012-4405-zMathSciNetCrossRefMATH
14.
Zurück zum Zitat Banchoff TF, Pohl WF: A generalization of the isoperimetric inequality. J. Differ. Geom. 1971, 6: 175-213.MathSciNetMATH Banchoff TF, Pohl WF: A generalization of the isoperimetric inequality. J. Differ. Geom. 1971, 6: 175-213.MathSciNetMATH
15.
Zurück zum Zitat Blaschke W: Vorlesungen über Intergralgeometrie. 3rd edition. Deutsch. Verlag Wiss, Berlin; 1955. Blaschke W: Vorlesungen über Intergralgeometrie. 3rd edition. Deutsch. Verlag Wiss, Berlin; 1955.
16.
Zurück zum Zitat Bokowski J, Heil E: Integral representation of quermassintegrals and Bonnesen-style inequalities. Arch. Math. 1986, 47: 79-89. 10.1007/BF01202503MathSciNetCrossRefMATH Bokowski J, Heil E: Integral representation of quermassintegrals and Bonnesen-style inequalities. Arch. Math. 1986, 47: 79-89. 10.1007/BF01202503MathSciNetCrossRefMATH
17.
18.
Zurück zum Zitat Gage M: An isoperimetric inequality with applications to curve shortening. Duke Math. J. 1983,50(4):1225-1229. 10.1215/S0012-7094-83-05052-4MathSciNetCrossRefMATH Gage M: An isoperimetric inequality with applications to curve shortening. Duke Math. J. 1983,50(4):1225-1229. 10.1215/S0012-7094-83-05052-4MathSciNetCrossRefMATH
19.
Zurück zum Zitat Green M, Osher S: Steiner polynomials, Wulff flows, and some new isoperimetric inequalities for convex plane curves. Asian J. Math. 1999,3(3):659-676.MathSciNetCrossRefMATH Green M, Osher S: Steiner polynomials, Wulff flows, and some new isoperimetric inequalities for convex plane curves. Asian J. Math. 1999,3(3):659-676.MathSciNetCrossRefMATH
20.
Zurück zum Zitat Gysin L: The isoperimetric inequality for nonsimple closed curves. Proc. Am. Math. Soc. 1993,118(1):197-203. 10.1090/S0002-9939-1993-1079698-XMathSciNetCrossRefMATH Gysin L: The isoperimetric inequality for nonsimple closed curves. Proc. Am. Math. Soc. 1993,118(1):197-203. 10.1090/S0002-9939-1993-1079698-XMathSciNetCrossRefMATH
21.
Zurück zum Zitat Hsiang WY: An elementary proof of the isoperimetric problem. Chin. Ann. Math. 2002,23(1):7-12.MathSciNetMATH Hsiang WY: An elementary proof of the isoperimetric problem. Chin. Ann. Math. 2002,23(1):7-12.MathSciNetMATH
22.
Zurück zum Zitat Sangwine-Yager JR: Mixe volumes. In Handbook of Covex Geometry, Vol. A. Edited by: Gruber P, Wills J. North-Holland, Amsterdam; 1993:43-71.CrossRef Sangwine-Yager JR: Mixe volumes. In Handbook of Covex Geometry, Vol. A. Edited by: Gruber P, Wills J. North-Holland, Amsterdam; 1993:43-71.CrossRef
23.
Zurück zum Zitat Sangwine-Yager JR: Bonnesen-style inequalities for Minkowski relative geometry. Trans. Am. Math. Soc. 1988,307(1):373-382. 10.1090/S0002-9947-1988-0936821-5MathSciNetCrossRefMATH Sangwine-Yager JR: Bonnesen-style inequalities for Minkowski relative geometry. Trans. Am. Math. Soc. 1988,307(1):373-382. 10.1090/S0002-9947-1988-0936821-5MathSciNetCrossRefMATH
24.
Zurück zum Zitat Diskant V: Bounds for the discrepancy between convex bodies in terms of the isoperimetric difference. Sib. Mat. Zh. 1972 (in Russian), English translation: Siberian Math. J. 13, 529-532 (1973), 13: 767-772. (in Russian), English translation: Siberian Math. J. 13, 529-532 (1973)MathSciNet Diskant V: Bounds for the discrepancy between convex bodies in terms of the isoperimetric difference. Sib. Mat. Zh. 1972 (in Russian), English translation: Siberian Math. J. 13, 529-532 (1973), 13: 767-772. (in Russian), English translation: Siberian Math. J. 13, 529-532 (1973)MathSciNet
25.
Zurück zum Zitat Diskant V: Strengthening of an isoperimetric inequality. Sib. Mat. Zh. 1973 (in Russian), English translation: Siberian Math. J. 14, 608-611 (1973), 14: 873-877. (in Russian), English translation: Siberian Math. J. 14, 608-611 (1973)MathSciNet Diskant V: Strengthening of an isoperimetric inequality. Sib. Mat. Zh. 1973 (in Russian), English translation: Siberian Math. J. 14, 608-611 (1973), 14: 873-877. (in Russian), English translation: Siberian Math. J. 14, 608-611 (1973)MathSciNet
26.
Zurück zum Zitat Diskant V: A generalization of Bonnesen’s inequalities. Sov. Math. Dokl. 1973, 14: 1728-1731.MATH Diskant V: A generalization of Bonnesen’s inequalities. Sov. Math. Dokl. 1973, 14: 1728-1731.MATH
27.
Zurück zum Zitat Schneider R: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge; 1993.CrossRefMATH Schneider R: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge; 1993.CrossRefMATH
28.
Zurück zum Zitat Hadwiger H: Kurze Herleitung einer verschärften isoperimetrischen Ungleichung für konvexe Körper. Revue Fac. Sci. Univ. Istanbul, Sér. A 1949, 14: 1-6.MathSciNetMATH Hadwiger H: Kurze Herleitung einer verschärften isoperimetrischen Ungleichung für konvexe Körper. Revue Fac. Sci. Univ. Istanbul, Sér. A 1949, 14: 1-6.MathSciNetMATH
29.
Zurück zum Zitat Hadwiger H: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin; 1957.CrossRefMATH Hadwiger H: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin; 1957.CrossRefMATH
30.
Zurück zum Zitat Klain D: Bonnesen-type inequalities for surfaces of constant curvature. Adv. Appl. Math. 2007,39(2):143-154. 10.1016/j.aam.2006.11.004MathSciNetCrossRefMATH Klain D: Bonnesen-type inequalities for surfaces of constant curvature. Adv. Appl. Math. 2007,39(2):143-154. 10.1016/j.aam.2006.11.004MathSciNetCrossRefMATH
31.
Zurück zum Zitat Ren D: Topics in Integral Geometry. World Scientific, Sigapore; 1994.MATH Ren D: Topics in Integral Geometry. World Scientific, Sigapore; 1994.MATH
32.
Zurück zum Zitat Zhang X-M: Schur-convex functions and isoperimetric inequalities. Proc. Am. Math. Soc. 1998,126(2):461-470. 10.1090/S0002-9939-98-04151-3CrossRefMathSciNetMATH Zhang X-M: Schur-convex functions and isoperimetric inequalities. Proc. Am. Math. Soc. 1998,126(2):461-470. 10.1090/S0002-9939-98-04151-3CrossRefMathSciNetMATH
33.
Zurück zum Zitat Gao X: A new reverse isoperimetric inequality and its stability. Math. Inequal. Appl. 2012,15(3):733-743.MathSciNetMATH Gao X: A new reverse isoperimetric inequality and its stability. Math. Inequal. Appl. 2012,15(3):733-743.MathSciNetMATH
34.
Zurück zum Zitat Pan S, Xu H: Stability of a reverse isoperimetric inequality. J. Math. Anal. Appl. 2009, 350: 348-353. 10.1016/j.jmaa.2008.09.047MathSciNetCrossRefMATH Pan S, Xu H: Stability of a reverse isoperimetric inequality. J. Math. Anal. Appl. 2009, 350: 348-353. 10.1016/j.jmaa.2008.09.047MathSciNetCrossRefMATH
35.
Zurück zum Zitat Pan S, Tang X, Wang X: A refined reverse isoperimetric inequality in the plane. Math. Inequal. Appl. 2010,13(2):329-338.MathSciNetMATH Pan S, Tang X, Wang X: A refined reverse isoperimetric inequality in the plane. Math. Inequal. Appl. 2010,13(2):329-338.MathSciNetMATH
36.
Zurück zum Zitat Xu W, Zhou J, Zhu B: On containment measure and the mixed isoperimetric inequality. J. Inequal. Appl. 2013. Article ID 540, 2013: Article ID 540 Xu W, Zhou J, Zhu B: On containment measure and the mixed isoperimetric inequality. J. Inequal. Appl. 2013. Article ID 540, 2013: Article ID 540
37.
Zurück zum Zitat Gardner R: Geometric Tomography. Cambridge University Press, New York; 1995.MATH Gardner R: Geometric Tomography. Cambridge University Press, New York; 1995.MATH
38.
39.
Zurück zum Zitat Gardner R: The Brunn-Minkowski inequality, Minkowski’s first inequality, and their duals. J. Math. Anal. Appl. 2000, 245: 502-512. 10.1006/jmaa.2000.6774MathSciNetCrossRefMATH Gardner R: The Brunn-Minkowski inequality, Minkowski’s first inequality, and their duals. J. Math. Anal. Appl. 2000, 245: 502-512. 10.1006/jmaa.2000.6774MathSciNetCrossRefMATH
Metadaten
Titel
Some Bonnesen-style Minkowski inequalities
verfasst von
Wenxue Xu
Chunna Zeng
Jiazu Zhou
Publikationsdatum
01.12.2014
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2014
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/1029-242X-2014-270

Weitere Artikel der Ausgabe 1/2014

Journal of Inequalities and Applications 1/2014 Zur Ausgabe

Premium Partner