Skip to main content
Erschienen in: Thermal Engineering 11/2023

01.11.2023 | STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Some Features Relating to the Occurrence of Low-Frequency Vibration in Large Steam Turbines and Methods for Removing It

verfasst von: A. I. Kumenko, A. M. Mironov, M. I. Shklyarov, S. Yu. Evdokimov

Erschienen in: Thermal Engineering | Ausgabe 11/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The article addresses general matters concerned with the occurrence of low-frequency vibration (LFV) in turbine units. It is pointed out that, despite the level of knowledge that has been achieved in regard to LFV, it still arises from time to time in power plant turbine units. Along with LFV caused by aero- and hydrodynamic excitation, LFV can also bear a subharmonic pattern. It is emphasized that the measures taken to remove LFV depend on the LFV occurrence origin. The article presents LFV occurrence and removal examples, including those relating to the use of honeycomb seals in high-pressure cylinders. With honeycomb seals, decreased sizes of channels and an increased channel component of overshroud forces caused by aerodynamic excitation are typically observed. It is pointed out that, in some cases that involve rotor rubbing against the stator, a multicomponent LFV with subharmonic and self-oscillation components is observed. It is shown that the regulatory documents do not contain criteria for estimating a multicomponent vibration in the low-frequency band. It is pointed out that multicomponent LFV can be a diagnostic indicator pointing to rubbing of the rotor against the babbit or seals. Recommendations on removing LFV of various origins are suggested. A diagnostic table that helps determine factors causing the LFV and that produces recommendations on increasing the turbine units operational reliability is given. It is stated for the first time that the turbine thrust bearing can behave as a source of oil excitation. It is also noted that the conditions under which a self-oscillation type LFV occur and its suppression methods should differ from the methods for suppressing self-excited LFV of a subharmonic nature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Trough-shaped axial-radial seals proposed by MPEI specialists were implemented for the first time by TMZ Engineer V.I. Vodichev in the T-250/300-23.5 turbine. After that, these seals were tested at the TsKTI. This was the way in which the TMZ-TsKTI seals proposed by A.G. Kostyuk appeared in the literature.
 
Literatur
1.
Zurück zum Zitat B. L. Newkirk and H. D. Taylor, “Shaft whipping due to oil action,” J. Bear., Gen. Electr. Rev. 23, 559–568 (1925). B. L. Newkirk and H. D. Taylor, “Shaft whipping due to oil action,” J. Bear., Gen. Electr. Rev. 23, 559–568 (1925).
3.
Zurück zum Zitat W. Traupel, Thermische Turbomaschinen, Vol. 2: Geänderte Betriebsbedingungen, Regelung, Mechanische Probleme, Temperaturprobleme (Springer, Berlin, 1960; Gosenergoizdat, Moscow, 1961). W. Traupel, Thermische Turbomaschinen, Vol. 2: Geänderte Betriebsbedingungen, Regelung, Mechanische Probleme, Temperaturprobleme (Springer, Berlin, 1960; Gosenergoizdat, Moscow, 1961).
4.
Zurück zum Zitat A. G. Kostyuk, Dynamics and Strength of Turbomachines: Textbook for Higher Schools (Mosk. Energ. Inst., Moscow, 2007) [in Russian]. A. G. Kostyuk, Dynamics and Strength of Turbomachines: Textbook for Higher Schools (Mosk. Energ. Inst., Moscow, 2007) [in Russian].
5.
Zurück zum Zitat A. G. Kostyuk, “Selection of labyrinth seals in steam turbines,” Therm. Eng. 63, 14–18 (2015).CrossRef A. G. Kostyuk, “Selection of labyrinth seals in steam turbines,” Therm. Eng. 63, 14–18 (2015).CrossRef
6.
Zurück zum Zitat A. G. Kostyuk, “Vibrations of steam turbine units,” in Vibration in Technology: Handbook, Ed. by F. M. Dimentberg and K. S. Kolesnikov (Mashinostroenie, Moscow, 1980), Vol. 3, pp. 300–322 [in Russian]. A. G. Kostyuk, “Vibrations of steam turbine units,” in Vibration in Technology: Handbook, Ed. by F. M. Dimentberg and K. S. Kolesnikov (Mashinostroenie, Moscow, 1980), Vol. 3, pp. 300–322 [in Russian].
7.
Zurück zum Zitat E. L. Poznyak, “Vibrations of rotors,” in Vibration in Technology: Handbook, Ed. by F. M. Dimentberg and K. S. Kolesnikov, (Mashinostroenie, Moscow, 1980), Vol. 3, pp. 130–189 [in Russian]. E. L. Poznyak, “Vibrations of rotors,” in Vibration in Technology: Handbook, Ed. by F. M. Dimentberg and K. S. Kolesnikov, (Mashinostroenie, Moscow, 1980), Vol. 3, pp. 130–189 [in Russian].
8.
Zurück zum Zitat V. I. Olimpiev, “The problem of fighting low-frequency vibration of a shaft train of high capacity steam power turbines,” Teploenergetika, No. 9, 8–14 (1978). V. I. Olimpiev, “The problem of fighting low-frequency vibration of a shaft train of high capacity steam power turbines,” Teploenergetika, No. 9, 8–14 (1978).
10.
Zurück zum Zitat A. A. Lomakin, Centrifugal and Propeller Pumps (Mashinostroenie, Moscow, 1968) [in Russian]. A. A. Lomakin, Centrifugal and Propeller Pumps (Mashinostroenie, Moscow, 1968) [in Russian].
11.
Zurück zum Zitat H. J. Thomas, “Instabile Eigenschwingungen von Turbinenlaufern, angefacht durch die Spaltstroemungen in Stopfbuchsen und Beschaufelungen,” Bull. JAIM, No. 11–12, 1039–1063 (1958). H. J. Thomas, “Instabile Eigenschwingungen von Turbinenlaufern, angefacht durch die Spaltstroemungen in Stopfbuchsen und Beschaufelungen,” Bull. JAIM, No. 11–12, 1039–1063 (1958).
12.
Zurück zum Zitat A. G. Kostyuk, A. L. Nekrasov, and A. I. Kumenko, “Analysis of subharmonic and self-excited oscillations of rotor–plain bearing systems,” Therm. Eng. 45, 11–18 (1998). A. G. Kostyuk, A. L. Nekrasov, and A. I. Kumenko, “Analysis of subharmonic and self-excited oscillations of rotor–plain bearing systems,” Therm. Eng. 45, 11–18 (1998).
13.
Zurück zum Zitat A. I. Kumenko, “Low-frequency vibration of turbine rotors, its causes, methods of diagnosing and eliminating,” Sborka Mashinostr. Priborostr., No. 4, 22–30 (2006). A. I. Kumenko, “Low-frequency vibration of turbine rotors, its causes, methods of diagnosing and eliminating,” Sborka Mashinostr. Priborostr., No. 4, 22–30 (2006).
14.
Zurück zum Zitat M. I. Shklyarov, Developing and Implementing Methods of Improving Dynamic Reliability and Reducing Vibration of Turbine Units on the Stages of Design, Adjustment and Operation, Candidate’s Dissertation in Engineering (St. Petersburg State Polytechnic Univ., St. Petersburg, 2007). M. I. Shklyarov, Developing and Implementing Methods of Improving Dynamic Reliability and Reducing Vibration of Turbine Units on the Stages of Design, Adjustment and Operation, Candidate’s Dissertation in Engineering (St. Petersburg State Polytechnic Univ., St. Petersburg, 2007).
15.
Zurück zum Zitat Rules of Technical Operation of Power Plants and Networks of the Russian Federation (Normatika, Moscow, 2021). Rules of Technical Operation of Power Plants and Networks of the Russian Federation (Normatika, Moscow, 2021).
16.
Zurück zum Zitat GOST (State Standard) R 55 265.2-2012. Mechanical Vibration. Evaluation of Machine Vibration by Measurements on Non-Rotating Parts. Part 2. Land-Based Steam Turbines and Generators in Excess of 50 MW with Normal Operating Speeds of 1500, 1800, 3000, and 3600 rpm (Standartinform, Moscow, 2014). GOST (State Standard) R 55 265.2-2012. Mechanical Vibration. Evaluation of Machine Vibration by Measurements on Non-Rotating Parts. Part 2. Land-Based Steam Turbines and Generators in Excess of 50 MW with Normal Operating Speeds of 1500, 1800, 3000, and 3600 rpm (Standartinform, Moscow, 2014).
17.
Zurück zum Zitat Gas Turbine K-500-240 of Kharkov Turbine and Generator Works, Ed. by V. N. Savin, (Energoatomizdat, Moscow, 1984) [in Russian]. Gas Turbine K-500-240 of Kharkov Turbine and Generator Works, Ed. by V. N. Savin, (Energoatomizdat, Moscow, 1984) [in Russian].
Metadaten
Titel
Some Features Relating to the Occurrence of Low-Frequency Vibration in Large Steam Turbines and Methods for Removing It
verfasst von
A. I. Kumenko
A. M. Mironov
M. I. Shklyarov
S. Yu. Evdokimov
Publikationsdatum
01.11.2023
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 11/2023
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601523110095

Weitere Artikel der Ausgabe 11/2023

Thermal Engineering 11/2023 Zur Ausgabe

RENEWABLE ENERGY SOURCES AND HYDROPOWER

Geoinformation Systems for Renewable Energy (Review)

    Premium Partner