Skip to main content
Erschienen in: Wireless Personal Communications 4/2014

01.08.2014

Some Fundamental Results on Complex Network Problem for Large-Scale Wireless Sensor Networks

verfasst von: Hui Wang, Yongfeng Huang, Hector Eduardo Roman

Erschienen in: Wireless Personal Communications | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless sensor networks (WSNs) are typically constituted by a large number of connected wireless sensors (nodes), generally distributed at random on a given surface area. In such large-scale networks, the desired global system performance is achieved by gathering local information and decisions collected from each individual node. There exist two fundamental global issues on WSNs that we consider here, i.e. full network connectivity and network lifetime. Full connectivity can be obtained either by increasing transmission range, at the expense of consuming higher transmission power, or by increasing the number of sensors, i.e. by increasing network costs. Both of them are closely related to global network lifetime, in the sense that the higher the power consumption or the more sensors deployed the shorter the network lifetime [31]. So the main question is, how can one design large-scale random networks in order to have both global connectivity and maximum network lifetime? Although these questions have been addressed often in the past, a definite, simple predicting algorithm for achieving these goals does not exist so far. In this paper, we aim to discuss such a scheme and confront it with extensive simulations of random networks generated numerically. Specifically, we study the minimum number of nodes required to achieve full network connectivity, and present an analytical formula for estimating it. The results are in very good agreement with the numerical simulations as a function of transmission range. In addition, we study in detail several other statistical properties of large-scale WSNs, such as average path distance, clustering coefficient, degree distribution, etc., also as a function of the transmission range, both qualitatively and quantitatively. We discuss results on how to further improve network energy consumption from the original networks considered by switching off (deleting) some nodes at random but keeping whole network connectivity. The present results are expected to be useful for the design of more efficient large-scale WSNs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pottie, G. J., & Kaiser, W. J. (2000). Wireless integrated network sensors. Communications of ACM, 43(5), 51–58.CrossRef Pottie, G. J., & Kaiser, W. J. (2000). Wireless integrated network sensors. Communications of ACM, 43(5), 51–58.CrossRef
2.
Zurück zum Zitat Cerpa, A., Elson, J., Hamilton, M., Zhao, J., Estrin, D., & Girod, L. (2001). Habitat monitoring: Application driver for wireless communications technology. In Proceedings of Workshop on Data communication in Latin America and the Caribbean, SIGCOMM (pp. 20–41) New York, NY: ACM Press. Cerpa, A., Elson, J., Hamilton, M., Zhao, J., Estrin, D., & Girod, L. (2001). Habitat monitoring: Application driver for wireless communications technology. In Proceedings of Workshop on Data communication in Latin America and the Caribbean, SIGCOMM (pp. 20–41) New York, NY: ACM Press.
3.
Zurück zum Zitat Akyildiz, L. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114. Akyildiz, L. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.
4.
Zurück zum Zitat Goldsmith, A. J., & Wicker, S. W. (2002). Design challenges for energy-constrained ad hoc wireless networks. IEEE Wireless Communications Magazine, 9(4), 8–27. Goldsmith, A. J., & Wicker, S. W. (2002). Design challenges for energy-constrained ad hoc wireless networks. IEEE Wireless Communications Magazine, 9(4), 8–27.
5.
Zurück zum Zitat Freris, N. M., Kowshik, H., & Kumar, P. R. (2010). Fundamentals of large sensor networks: connectivity, capacity, clocks, and computation. Proceedings of the IEEE, 98(11), 1828–1846. Freris, N. M., Kowshik, H., & Kumar, P. R. (2010). Fundamentals of large sensor networks: connectivity, capacity, clocks, and computation. Proceedings of the IEEE, 98(11), 1828–1846.
6.
Zurück zum Zitat Ye, F., Luo, H., Cheng, J., Lu, S., & Zhang, L. (2002). A two-tier data dissemination model for large-scale wireless sensor networks. ACM MOBICOM’02, Atlanta, Georgia. Ye, F., Luo, H., Cheng, J., Lu, S., & Zhang, L. (2002). A two-tier data dissemination model for large-scale wireless sensor networks. ACM MOBICOM’02, Atlanta, Georgia.
7.
Zurück zum Zitat Lu, C., Blum, B. M., Abdelzaher, T. F., Stankovic, J. A., & He, T. (2002). RAP: A real-time communication architecture for large-scale wireless sensor networks. In IEEE real-time and embedded technology and applications symposium. Lu, C., Blum, B. M., Abdelzaher, T. F., Stankovic, J. A., & He, T. (2002). RAP: A real-time communication architecture for large-scale wireless sensor networks. In IEEE real-time and embedded technology and applications symposium.
8.
Zurück zum Zitat Li, Xiangyang. (2008). Wireless ad hoc and sensor networks. Cambrige: Cambrige University Press.CrossRef Li, Xiangyang. (2008). Wireless ad hoc and sensor networks. Cambrige: Cambrige University Press.CrossRef
9.
Zurück zum Zitat Madan, R., Cui, S., & Goldsmith, A. J. (2006). Cross-layer design for lifetime maximization in interference-limited wireless sensor networks. IEEE Transaction on Wireless Communications, 5(11), 3142–3152. Madan, R., Cui, S., & Goldsmith, A. J. (2006). Cross-layer design for lifetime maximization in interference-limited wireless sensor networks. IEEE Transaction on Wireless Communications, 5(11), 3142–3152.
10.
Zurück zum Zitat Chang, J.-H., & Tassiulas, L. (2004). Maximum lifetime routing in wireless sensor networks. IEEE/ACM Transactions on Networking, 12(4), 609–619. Chang, J.-H., & Tassiulas, L. (2004). Maximum lifetime routing in wireless sensor networks. IEEE/ACM Transactions on Networking, 12(4), 609–619.
11.
Zurück zum Zitat Madan, R., & Lall, S. (2006). Distributed algorithms for maximum lifetime routing in wireless sensor networks. IEEE Transaction on Wireless Communications, 5(8), 2185–2193. Madan, R., & Lall, S. (2006). Distributed algorithms for maximum lifetime routing in wireless sensor networks. IEEE Transaction on Wireless Communications, 5(8), 2185–2193.
12.
Zurück zum Zitat Giridhar, A., & Kumar, P. R. (2005). Maximizing the functional lifetime of sensor networks, IPSN. Giridhar, A., & Kumar, P. R. (2005). Maximizing the functional lifetime of sensor networks, IPSN.
13.
Zurück zum Zitat Chen, G. (2007). Complex dynamical networks: An introduction. Lecture Notes in EE 6605 in City University of Hong Kong. Chen, G. (2007). Complex dynamical networks: An introduction. Lecture Notes in EE 6605 in City University of Hong Kong.
14.
Zurück zum Zitat Erdös, P., & Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17–60.MATH Erdös, P., & Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17–60.MATH
15.
16.
Zurück zum Zitat Gilbert, E. N. (1961). Random plane networks. Journal of the Society for Industrial & Applied Mathematics, 9, 533–543.CrossRefMATH Gilbert, E. N. (1961). Random plane networks. Journal of the Society for Industrial & Applied Mathematics, 9, 533–543.CrossRefMATH
17.
Zurück zum Zitat Gupta, P., & Kumar, P. R. (1998). Critical power for asymptotic connectivity in wireless networks. In W. H. Fleming, W. M. McEneany, G. Yin, & Q. Zhang (Eds.), Stochastic analysis, control, optimization, and applications: A volume in honor (pp. 547–566). Boston, MA: Birkhauser. Gupta, P., & Kumar, P. R. (1998). Critical power for asymptotic connectivity in wireless networks. In W. H. Fleming, W. M. McEneany, G. Yin, & Q. Zhang (Eds.), Stochastic analysis, control, optimization, and applications: A volume in honor (pp. 547–566). Boston, MA: Birkhauser.
18.
19.
Zurück zum Zitat Bambos, N. (1998). Toward power-sensitive network architectures in wireless communications: Concepts, issues and design aspects. IEEE Personal Communications Magazine, 5(3), 50–59.CrossRef Bambos, N. (1998). Toward power-sensitive network architectures in wireless communications: Concepts, issues and design aspects. IEEE Personal Communications Magazine, 5(3), 50–59.CrossRef
20.
Zurück zum Zitat Ramanathan, R., & Rosales-Hain, R. (2000). Topology control of multihop wireless networks using transmit power adjustment. In Proceedimgs of IEEE Infocom 2000. Ramanathan, R., & Rosales-Hain, R. (2000). Topology control of multihop wireless networks using transmit power adjustment. In Proceedimgs of IEEE Infocom 2000.
21.
Zurück zum Zitat Chen, W. I., & Huang, N. F. (1989). The strongly connecting problem on multihop packet radio networks. IEEE Transactions on Communications, 37(3), 293–295.CrossRef Chen, W. I., & Huang, N. F. (1989). The strongly connecting problem on multihop packet radio networks. IEEE Transactions on Communications, 37(3), 293–295.CrossRef
22.
Zurück zum Zitat Rajaraman, R. (2002). Topology control and routing in ad hoc networks: A survey. ACM Newletter, 33(2), 60–73. Rajaraman, R. (2002). Topology control and routing in ad hoc networks: A survey. ACM Newletter, 33(2), 60–73.
23.
Zurück zum Zitat Li, L., Halpern, J., Bahl, V., Wang, Y.-M., & Wattenhofer, R. (2001). Analysis of a cone-based distributed topology control algorithms for wireless multi-hop networks. In Proceedings of ACM symposium on principles of distributed computing (pp. 264–273). Li, L., Halpern, J., Bahl, V., Wang, Y.-M., & Wattenhofer, R. (2001). Analysis of a cone-based distributed topology control algorithms for wireless multi-hop networks. In Proceedings of ACM symposium on principles of distributed computing (pp. 264–273).
24.
Zurück zum Zitat Rodoplu, V., & Meng, T. (1999). Minimum energy mobile wireless networks. IEEE Journal Selected Areas in Communications, 17(8), 1333–1344.CrossRef Rodoplu, V., & Meng, T. (1999). Minimum energy mobile wireless networks. IEEE Journal Selected Areas in Communications, 17(8), 1333–1344.CrossRef
25.
Zurück zum Zitat Wang, Y., & Li, X.-Y. (2002). Distributed spanner with bounded degree for wireless ad hoc networks. In Parallel and distributed computing issues in wireless networks and mobile computing. Wang, Y., & Li, X.-Y. (2002). Distributed spanner with bounded degree for wireless ad hoc networks. In Parallel and distributed computing issues in wireless networks and mobile computing.
26.
Zurück zum Zitat Wattenhofer, R., Li, L., Bahl, P., & Wang, Y.-M. (2001). Distributed topology control for power efficient operation in multihop wireless ad hoc networks. In Proceedings of IEEE Infocom. Wattenhofer, R., Li, L., Bahl, P., & Wang, Y.-M. (2001). Distributed topology control for power efficient operation in multihop wireless ad hoc networks. In Proceedings of IEEE Infocom.
27.
Zurück zum Zitat Alzoubi, K., Li, X.-Y., Wang, Y., Wan, P.-J., & Frieder, O. (2003). Geometric spanners for wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Processing, 14, 408–421.CrossRef Alzoubi, K., Li, X.-Y., Wang, Y., Wan, P.-J., & Frieder, O. (2003). Geometric spanners for wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Processing, 14, 408–421.CrossRef
28.
Zurück zum Zitat Li, X.-Y. (2002). Algorithmic, geometric, and graph issues in wireless networks. New York: Wiley Wireless Communications and Mobile Computing (WCMC), Wiley. Li, X.-Y. (2002). Algorithmic, geometric, and graph issues in wireless networks. New York: Wiley Wireless Communications and Mobile Computing (WCMC), Wiley.
29.
Zurück zum Zitat Alzoubi, K. M. (2002). Virtual Backbone inWireless AdHoc Networks. Ph.D. dissertation, Illinois Institute of Technology. Alzoubi, K. M. (2002). Virtual Backbone inWireless AdHoc Networks. Ph.D. dissertation, Illinois Institute of Technology.
30.
Zurück zum Zitat Wan, P.-J., Alzoubi, K. M., & Frieder, O. (2002). Distributed construction of connected dominating set in wireless ad hoc networks. IEEE INFOCOM. Wan, P.-J., Alzoubi, K. M., & Frieder, O. (2002). Distributed construction of connected dominating set in wireless ad hoc networks. IEEE INFOCOM.
31.
Zurück zum Zitat Wang. H., Yang. Y., & Ma. M. (2007). Network lifetime global optimization by duality approach in wireless sensor networks. IEEE GLOBEM’07 (pp. 1017–1021), Washington DC, US. Wang. H., Yang. Y., & Ma. M. (2007). Network lifetime global optimization by duality approach in wireless sensor networks. IEEE GLOBEM’07 (pp. 1017–1021), Washington DC, US.
Metadaten
Titel
Some Fundamental Results on Complex Network Problem for Large-Scale Wireless Sensor Networks
verfasst von
Hui Wang
Yongfeng Huang
Hector Eduardo Roman
Publikationsdatum
01.08.2014
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2014
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-014-1677-3

Weitere Artikel der Ausgabe 4/2014

Wireless Personal Communications 4/2014 Zur Ausgabe

Neuer Inhalt