Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2013

Open Access 01.12.2013 | Research

Some geometric properties of the metric space V [ λ , p ]

verfasst von: Muhammed Çinar, Murat Karakaş, Mikail Et

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2013

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

In this study, we consider the space V [ λ , p ] with an invariant metric. Then, we examine some geometric properties of the linear metric space V [ λ , p ] such as property (β), property (H) and k-NUC property.
MSC:40A05, 46A45, 46B20.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MC, MK and ME have contributed to all parts of the article. All authors read and approved the final manuscript.

1 Introduction

Let X be a vector space over the scalar field of real numbers and d be an invariant metric on X. We denote B d ( X ) and S d ( X ) as follows:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-28/MediaObjects/13660_2012_Article_470_Equa_HTML.gif
Let ( X , d ) be a linear metric space and B d ( X ) (resp., S d ( X ) ) be a closed unit ball (resp., the unit sphere) of X. A linear metric space ( X , d ) has property (β) if and only if for each r > 0 and ε > 0 , there exists δ > 0 such that for each element x B d ( 0 , r ) and each sequence ( x n ) in B d ( 0 , r ) with sep ( x n ) ε , there is an index k for which d ( x + x k 2 , 0 ) 1 δ , where sep ( x n ) = inf { d ( x n , x m ) : n m } > ε [1]. If for each x S d ( 0 , r ) and ( x n ) S d ( 0 , r ) , x n w x implies x n x , a linear metric space ( X , d ) is said to have property (H). Let k 2 be an integer. A linear metric space ( X , d ) is said to be k-nearly uniform convex (k-NUC) if for every ε > 0 and r > 0 , there exists δ > 0 such that for any sequence ( x n ) B d ( 0 , r ) with sep ( x n ) ε , there are s 1 , s 2 , , s k such that d ( x s 1 + x s 2 + + x s k k , 0 ) r δ [2]. These properties have been studied by Mongkolkeha and Pumam [3], Sanhan and Suantai [4], Cui et al. [5] and Cui and Hudzik [6].
Ahuja et al. [7] introduced the notions of strict convexity and U.C.I (uniform convexity) in linear metric spaces which are generalizations of the corresponding concepts in linear normed spaces. Later, Sastry and Naidu [8] introduced the notions of U.C.II and U.C.III in linear metric spaces and showed that these three forms are not always equivalent. Further, Junde et al. [9, 10] showed that if a linear metric space is complete and U.C.I, then it is reflexive.
In summability theory, de la Vallée-Poussin mean was first used to define the ( V , λ ) -summability by Leindler [11]. ( V , λ ) -summable sequences have been studied by many authors including Et et al. [12, 13], Savas [1418], Savas and Malkowsky [19] and Şimsek et al. [20, 21]. Let Λ = ( λ k ) be a nondecreasing sequence of positive real numbers tending to infinity and let λ 1 = 1 and λ k + 1 λ k + 1 . The generalized de la Vallée-Poussin mean is defined by t n ( x ) = 1 λ n k I n x k , where I n = [ n λ n + 1 , n ] for n = 1 , 2 ,  . A sequence x = ( x k ) is said to be ( V , λ ) -summable to a number if t n ( x ) as n . If λ n = n , then ( V , λ ) -summability is reduced to Cesàro summability.
Let w be the space of all real sequences. Let p = ( p k ) be a bounded sequence of positive real numbers. Şimşek et al. [20] defined the space V [ λ , p ] as follows:
V [ λ , p ] = { x = ( x k ) ω : k = 1 ( 1 λ k j I k | x j | ) p k < } .
If λ k = k , then V [ λ , p ] = ces ( p )  [22]. If λ k = k and p k = p for all k N , then V [ λ , p ] = ces p  [23]. Paranorm on V [ λ , p ] is given by
h ( x ) = ( k = 1 ( 1 λ k j I k | x j | ) p k ) 1 M ,
where M = max { 1 , H } and H = sup p k . If p k = p for all k N , the notation V p ( λ ) is used in place of V [ λ , p ] and the norm on V p ( λ ) is as follows:
x V p ( λ ) = ( k = 1 ( 1 λ k j I k | x j | ) p ) 1 p .
ρ : V ρ [ λ , p ] [ 0 , ] , ρ ( x ) = ( k = 1 ( 1 λ k j I k | x j | ) p k ) is a modular on V ρ [ λ , p ] and the Luxemburg norm on V ρ [ λ , p ] is defined by x L = inf { σ > 0 : ρ ( x σ ) 1 } for all x V ρ [ λ , p ] . The Amemiya norm on the space V ρ [ λ , p ] can be similarly introduced as follows:
x A = inf σ > 0 1 σ ( 1 + ρ ( σ x ) ) for all  x V ρ [ λ , p ] .

2 Main results

In this part of the paper, our main purpose is to define a metric on V [ λ , p ] and show that V [ λ , p ] possesses property (β), property (H) and k-NUC property. Let p = ( p k ) be a bounded sequence of real numbers with p k > 1 for all k N . The mapping d ( x , y ) = ( k = 1 ( 1 λ k j I k | x ( j ) y ( j ) | ) p k ) 1 / H is a metric on the space V [ λ , p ] , where M = max ( 1 , H = sup p k ) and m = inf p k since the function | t | p is convex for p > 1 . First, we will show that the space V [ λ , p ] has property (β) under the above metric. To do this, we need the following two lemmas. To prove these lemmas, we use the technique given in Sanhan and Mongkolkeha [1].
Lemma 2.1 Let y , z ( V [ λ , p ] , d ) . If β ( 0 , 1 ) , then
( d ( y + z , 0 ) ) M ( d ( y , 0 ) ) M + 2 M β ( d ( y , 0 ) ) M + 2 M β M 1 ( d ( z , 0 ) ) M .
Proof Let y , z ( V [ λ , p ] , d ) and 0 < β < 1 . Then
( d ( y + z , 0 ) ) M = k = 1 ( 1 λ k j I k | y ( j ) + z ( j ) | ) p k k = 1 ( ( 1 β ) 1 λ k j I k | y ( j ) | + β 1 λ k j I k | y ( j ) + z ( j ) β | ) p k ( 1 β ) k = 1 ( 1 λ k j I k | y ( j ) | ) p k + β k = 1 ( 1 λ k j I k | y ( j ) + z ( j ) β | ) p k k = 1 ( 1 λ k j I k | y ( j ) | ) p k + 2 M β k = 1 ( 1 λ k j I k | y ( j ) | ) p k + 2 M k = 1 ( 1 λ k j I k | z ( j ) β | ) p k k = 1 ( 1 λ k j I k | y ( j ) | ) p k + 2 M β k = 1 ( 1 λ k j I k | y ( j ) | ) p k + 2 M β M 1 k = 1 ( 1 λ k j I k | z ( j ) | ) p k = ( d ( y , 0 ) ) M + 2 M β ( d ( y , 0 ) ) M + 2 M β M 1 ( d ( z , 0 ) ) M .
 □
Lemma 2.2 Let y , z ( V [ λ , p ] , d ) . Then for any ε > 0 and L > 0 , there exists δ > 0 such that
| ( d ( y + z , 0 ) ) M ( d ( y , 0 ) ) M | < ε ,
where ( d ( y , 0 ) ) M L and ( d ( z , 0 ) ) M δ .
Proof Let ε > 0 and L > 0 . For β = ε 2 M + 1 ( L + ε ) , we take δ = ε β M 1 2 M + 1 . From Lemma 2.1, we have
( d ( y + z , 0 ) ) M ( d ( y , 0 ) ) M + 2 M β ( d ( y , 0 ) ) M + 2 M β M 1 ( d ( z , 0 ) ) M ( d ( y , 0 ) ) M + 2 M β L + 2 M β M 1 δ ( d ( y , 0 ) ) M + 2 M ε 2 M + 1 L L + ε + 2 M β M 1 ε β M 1 2 M + 1 ( d ( y , 0 ) ) M + ε 2 + ε 2 ( d ( y , 0 ) ) M + ε
(2.1)
and
( d ( y , 0 ) ) M ( d ( y + z , 0 ) ) M + 2 M β ( d ( y + z , 0 ) ) M + 2 M β M 1 ( d ( z , 0 ) ) M ( d ( y + z , 0 ) ) M + 2 M β ( ( d ( y , 0 ) ) M + ε ) + 2 M β M 1 δ ( d ( y + z , 0 ) ) M + 2 M β ( L + ε ) + 2 M β M 1 ε β M 1 2 M + 1 = ( d ( y + z , 0 ) ) M + 2 M ε 2 M + 1 ( L + ε ) ( L + ε ) + ε 2 = ( d ( y + z , 0 ) ) M + ε 2 + ε 2 = ( d ( y + z , 0 ) ) M + ε .
(2.2)
From (2.1) and (2.2), we obtain that | ( d ( y + z , 0 ) ) M ( d ( y , 0 ) ) M | < ε . □
Theorem 2.3 The space ( V [ λ , p ] , d ) has property (β).
Proof Let ε > 0 and ( x n ) B ( V [ λ , p ] , d ) such that sep ( x n ) ε and x B ( V [ λ , p ] , d ) . We take y N = ( 0 , 0 , , 0 , k = 1 N y ( k ) , y ( N + 1 ) , y ( N + 2 ) , ) . By using the diagonal method, we can find a subsequence ( x n r ) of ( x n ) for each N N such that ( x n r ( k ) ) converges for each k N with 1 k N , since ( x n ( k ) ) k = 1 is bounded for each k N . Therefore, there is t N N for each N N such that sep ( ( x n N ) r > t N ) ε . So, there is a sequence of positive integers ( t N ) N = 1 with t 1 < t 2 < t 3 such that d ( x t N N , 0 ) ε 2 for all N N . Then there exists κ > 0 such that for all N N ,
k = N ( 1 λ k j I k | x t N | ) p k κ .
(2.3)
By Lemma 2.2, there exists δ 0 such that
| ( d ( y + z , 0 ) ) M ( d ( y , 0 ) ) M | < κ 2 m ,
(2.4)
where ( d ( y , 0 ) ) M < j M and ( d ( z , 0 ) ) M δ 0 . There exists N 1 N such that ( d ( x N 1 , 0 ) ) M δ 0 if x B ( V [ λ , p ] ) and ( d ( x , 0 ) ) M δ 0 . Let us take y = x t N 1 N 1 and z = x N 1 . Hence, we have
k = N 1 ( 1 λ k j I k | x ( j ) + x t N 1 ( j ) 2 | ) p k k = N 1 ( 1 λ k j I k | x t N 1 ( j ) 2 | ) p k + κ 2 m .
(2.5)
From (2.3), (2.4), (2.5) and by using the convexity of the function f ( t ) = | t | p k for all k N , we obtain that
( d ( y + z 2 , 0 ) ) M = k = 1 ( 1 λ k j I k | x ( j ) + x t N 1 ( j ) 2 | ) p k = k = 1 N 1 1 ( 1 λ k j I k | x ( j ) + x t N 1 ( j ) 2 | ) p k + k = N 1 ( 1 λ k j I k | x ( j ) + x t N 1 ( j ) 2 | ) p k k = 1 N 1 1 ( 1 λ k j I k | x ( j ) + x t N 1 ( j ) 2 | ) p k + k = N 1 ( 1 λ k j I k | x t N 1 ( k ) 2 | ) p k + κ 2 m 1 2 k = 1 N 1 1 ( 1 λ k j I k | x ( j ) | ) p k + 1 2 k = 1 N 1 1 ( 1 λ k j I k | x t N 1 ( j ) | ) p k + 1 2 m k = N 1 ( 1 λ k j I k | x t N 1 ( j ) | ) p k + κ 2 m 1 2 k = 1 N 1 1 ( 1 λ k j I k | x ( j ) | ) p k + 1 2 k = 1 ( 1 λ k j I k | x t N 1 ( j ) | ) p k 2 m 2 2 m + 1 k = N 1 ( 1 λ k j I k | x t N 1 ( j ) | ) p k + κ 2 m < j M 2 + j M 2 2 m 2 2 m + 1 κ + κ 2 m = j M κ 2 .
Therefore, we have d ( y + z 2 , 0 ) < ( j M κ 2 ) 1 / M < j δ whenever δ ( 0 , j ( j M κ 2 ) 1 / M ) . Consequently, the space ( V [ λ , p ] , d ) possesses property (β). □
Now, we will show that the space ( V [ λ , p ] , d ) has k-NUC property.
Theorem 2.4 The space V [ λ , p ] is k-NUC for any integer k 2 .
Proof Let ε > 0 and ( x n ) B d ( V [ λ , p ] ) with sep ( x n ) ε . For each m N , let
x n m = ( 0 , 0 , , x n ( m ) , x n ( m + 1 ) , ) .
(2.6)
Since the sequence ( x n ( i ) ) i = 1 is bounded for each i N , by using the diagonal method, we can find a subsequence ( x n l ) of ( x n ) such that ( x n l ( k ) ) converges for each k N . Therefore, there is an increasing sequence t m with sep ( ( x n l m ) l > t m ) ε . Hence, there exists a sequence of positive integers ( r m ) m = 1 with r 1 < r 2 < r 3 < such that d ( x r m m , 0 ) ε 2 for all m N . Then there is ζ > 0 such that
k = m ( 1 λ k j I k | x r m | ) p k ζ .
(2.7)
Let α > 0 such that 1 < α < lim k inf p k . Let ε 1 = n α 1 1 ( n 1 ) n α ζ 2 for k 2 . From Lemma 2.2, there is a δ > 0 such that
| ( d ( y + z , 0 ) ) M ( d ( y , 0 ) ) M | < ε 1 ,
(2.8)
where ( d ( y , 0 ) ) M < r M and ( d ( z , 0 ) ) M δ . Then there exist positive integers m i ( i = 1 , 2 , , n 1 ) with m 1 < m 2 < < m n 1 such that d ( x i m i , 0 ) δ . Now, define m n = m n 1 + 1 . Then we have d ( x r m n m n , 0 ) ζ for all m N . For 1 i n 1 , let s i = i and s n = r m n . By using (2.6), (2.7), (2.8) and the convexity of the function f i ( u ) = | u | p i ( i N ), we obtain
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-28/MediaObjects/13660_2012_Article_470_Equj_HTML.gif
Thus, we have d ( x s 1 ( j ) + x s 2 ( j ) + + x s n ( j ) n , 0 ) < ( r M ( n α 1 1 n α ) ζ 2 ) 1 / M < r δ for δ ( 0 , r ( r M ( n α 1 1 n α ) ζ 2 ) 1 / M ) . Hence, ( V [ λ , p ] , d ) is k-NUC. □
Since k-NUC implies NUC and NUC implies property (H), by using the previous theorem, we can give the following result.
Corollary 2.5 The space ( V [ λ , p ] , d ) has property (H).
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MC, MK and ME have contributed to all parts of the article. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Sanhan W, Mongkolkeha C: A locally uniform rotund and property ( β ) of generalized Cesàro ( ces ( p ) , d ) metric space. Int. J. Math. Anal. 2011, 5(9–12):549–558.MATHMathSciNet Sanhan W, Mongkolkeha C: A locally uniform rotund and property ( β ) of generalized Cesàro ( ces ( p ) , d ) metric space. Int. J. Math. Anal. 2011, 5(9–12):549–558.MATHMathSciNet
2.
Zurück zum Zitat Junde W, Narang TD: H -property, normal structure and fixed points of nonexpansive mappings in metric linear spaces. Acta Math. Vietnam. 2000, 25(1):13–18.MATHMathSciNet Junde W, Narang TD: H -property, normal structure and fixed points of nonexpansive mappings in metric linear spaces. Acta Math. Vietnam. 2000, 25(1):13–18.MATHMathSciNet
3.
Zurück zum Zitat Mongkolkeha C, Kumam P: Some geometric properties of lacunary sequence spaces related to fixed point property. Abstr. Appl. Anal. 2011., 2011: Article ID 903736 Mongkolkeha C, Kumam P: Some geometric properties of lacunary sequence spaces related to fixed point property. Abstr. Appl. Anal. 2011., 2011: Article ID 903736
4.
Zurück zum Zitat Sanhan W, Suantai S: On k -nearly uniform convex property in generalized Cesàro sequence spaces. Int. J. Math. Math. Sci. 2003, 57: 3599–3607.MathSciNetCrossRef Sanhan W, Suantai S: On k -nearly uniform convex property in generalized Cesàro sequence spaces. Int. J. Math. Math. Sci. 2003, 57: 3599–3607.MathSciNetCrossRef
5.
Zurück zum Zitat Cui Y, Hudzik H, Ping W: On k -nearly uniform convexity in Orlicz spaces. Perspectives in mathematical analysis. Rev. R. Acad. Cienc. Exactas Fís. Nat. 2000, 94(4):461–466. (Spanish)MATHMathSciNet Cui Y, Hudzik H, Ping W: On k -nearly uniform convexity in Orlicz spaces. Perspectives in mathematical analysis. Rev. R. Acad. Cienc. Exactas Fís. Nat. 2000, 94(4):461–466. (Spanish)MATHMathSciNet
6.
Zurück zum Zitat Cui Y, Hudzik H: Some geometric properties related to fixed point theory in Cesàro spaces. Collect. Math. 1999, 50(3):277–288.MATHMathSciNet Cui Y, Hudzik H: Some geometric properties related to fixed point theory in Cesàro spaces. Collect. Math. 1999, 50(3):277–288.MATHMathSciNet
7.
Zurück zum Zitat Ahuja GC, Narang TD, Trehan S: Best approximation on convex sets in metric linear spaces. Math. Nachr. 1977, 78: 125–130. 10.1002/mana.19770780110MATHMathSciNetCrossRef Ahuja GC, Narang TD, Trehan S: Best approximation on convex sets in metric linear spaces. Math. Nachr. 1977, 78: 125–130. 10.1002/mana.19770780110MATHMathSciNetCrossRef
8.
Zurück zum Zitat Sastry KPR, Naidu SVR: Convexity conditions in metric linear spaces. Math. Semin. Notes 1979, 7: 235–251.MATHMathSciNet Sastry KPR, Naidu SVR: Convexity conditions in metric linear spaces. Math. Semin. Notes 1979, 7: 235–251.MATHMathSciNet
9.
Zurück zum Zitat Junde W, Lianchang C: Reflexivity of uniform convexity in metric linear spaces and its applications. Adv. Math. (China) 1994, 23: 439–444. Junde W, Lianchang C: Reflexivity of uniform convexity in metric linear spaces and its applications. Adv. Math. (China) 1994, 23: 439–444.
10.
Zurück zum Zitat Junde W, Dehai Y, Wenbo Q: The uniform convexity and reflexivity in metric linear spaces. Math. Appl., Chin. Ser. 1995, 8: 322–324.MATH Junde W, Dehai Y, Wenbo Q: The uniform convexity and reflexivity in metric linear spaces. Math. Appl., Chin. Ser. 1995, 8: 322–324.MATH
11.
Zurück zum Zitat Leindler L: Über die verallgemeinerte de la Vallee-Poussinsche summierbarkeit allgemeiner Orthogonalreihen. Acta Math. Acad. Sci. Hung. 1965, 16: 375–387. 10.1007/BF01904844MATHMathSciNetCrossRef Leindler L: Über die verallgemeinerte de la Vallee-Poussinsche summierbarkeit allgemeiner Orthogonalreihen. Acta Math. Acad. Sci. Hung. 1965, 16: 375–387. 10.1007/BF01904844MATHMathSciNetCrossRef
12.
Zurück zum Zitat Et M: Spaces of Cesàro difference sequences of order r defined by a modulus function in a locally convex space. Taiwan. J. Math. 2006, 10: 865–879.MATHMathSciNet Et M: Spaces of Cesàro difference sequences of order r defined by a modulus function in a locally convex space. Taiwan. J. Math. 2006, 10: 865–879.MATHMathSciNet
13.
Zurück zum Zitat Güngör M, Et M, Altin Y:Strongly ( V σ , λ , q ) -summable sequences defined by Orlicz functions. Appl. Math. Comput. 2004, 157: 561–571. 10.1016/j.amc.2003.08.051MATHMathSciNetCrossRef Güngör M, Et M, Altin Y:Strongly ( V σ , λ , q ) -summable sequences defined by Orlicz functions. Appl. Math. Comput. 2004, 157: 561–571. 10.1016/j.amc.2003.08.051MATHMathSciNetCrossRef
14.
Zurück zum Zitat Savas E, Savas R: Some λ -sequence spaces defined by Orlicz functions. Indian J. Pure Appl. Math. 2003, 34: 1673–1680.MATHMathSciNet Savas E, Savas R: Some λ -sequence spaces defined by Orlicz functions. Indian J. Pure Appl. Math. 2003, 34: 1673–1680.MATHMathSciNet
15.
16.
Zurück zum Zitat Savas E: On asymptotically λ -statistical equivalent sequences of fuzzy numbers. New Math. Nat. Comput. 2007, 3(3):301–306. 10.1142/S1793005707000781MATHMathSciNetCrossRef Savas E: On asymptotically λ -statistical equivalent sequences of fuzzy numbers. New Math. Nat. Comput. 2007, 3(3):301–306. 10.1142/S1793005707000781MATHMathSciNetCrossRef
17.
Zurück zum Zitat Savas E:On λ ¯ -statistically convergent double sequences of fuzzy numbers. J. Inequal. Appl. 2008., 2008: Article ID 147827 Savas E:On λ ¯ -statistically convergent double sequences of fuzzy numbers. J. Inequal. Appl. 2008., 2008: Article ID 147827
18.
Zurück zum Zitat Savas E: λ ¯ -double sequence spaces of fuzzy real numbers defined by Orlicz function. Math. Commun. 2009, 14(2):287–297.MATHMathSciNet Savas E: λ ¯ -double sequence spaces of fuzzy real numbers defined by Orlicz function. Math. Commun. 2009, 14(2):287–297.MATHMathSciNet
19.
Zurück zum Zitat Savas E, Malkowsky E: Some λ -sequence spaces defined by a modulus. Arch. Math. 2000, 36(3):219–228.MATHMathSciNet Savas E, Malkowsky E: Some λ -sequence spaces defined by a modulus. Arch. Math. 2000, 36(3):219–228.MATHMathSciNet
20.
Zurück zum Zitat Simsek N, Savas E, Karakaya V: Some geometric and topological properties of a new sequence space defined by de la Vallée-Poussin mean. J. Comput. Anal. Appl. 2010, 12: 768–779.MATHMathSciNet Simsek N, Savas E, Karakaya V: Some geometric and topological properties of a new sequence space defined by de la Vallée-Poussin mean. J. Comput. Anal. Appl. 2010, 12: 768–779.MATHMathSciNet
21.
Zurück zum Zitat Simsek N: On some geometric properties of sequence space defined by de la Vallée-Poussin mean. J. Comput. Anal. Appl. 2011, 13: 565–573.MATHMathSciNet Simsek N: On some geometric properties of sequence space defined by de la Vallée-Poussin mean. J. Comput. Anal. Appl. 2011, 13: 565–573.MATHMathSciNet
22.
Zurück zum Zitat Suantai S: On the H -property of some Banach sequence spaces. Arch. Math. 2003, 39: 309–316.MATHMathSciNet Suantai S: On the H -property of some Banach sequence spaces. Arch. Math. 2003, 39: 309–316.MATHMathSciNet
23.
Metadaten
Titel
Some geometric properties of the metric space
verfasst von
Muhammed Çinar
Murat Karakaş
Mikail Et
Publikationsdatum
01.12.2013
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2013
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/1029-242X-2013-28

Weitere Artikel der Ausgabe 1/2013

Journal of Inequalities and Applications 1/2013 Zur Ausgabe

Premium Partner