Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2013

Open Access 01.12.2013 | Research

Some improvements of Minkowski’s integral inequality on time scales

verfasst von: Guang-Sheng Chen

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2013

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

In the paper, we establish some improvements of Minkowski’s inequality on time scales via the delta integral, nabla integral and diamond-α dynamic integral, which is defined as a linear combination of the delta and nabla integrals.
MSC:26D15, 26E70.
Hinweise

Competing interests

The author declares that he has no competing interests.

1 Introduction

In 1988, Hilger in [1] established the theory of time scales in his doctoral dissertation, which resulted in his seminal paper in [2]. His work aimed to unify and generalize various mathematical concepts according to the theories of discrete and continuous analysis. Much information concerning time scales and dynamic equations on time scales can be found in the literature in [312]. Since then many authors have studied some integral inequalities on time scales in [1316]. In [13, 14], the authors described the delta integral Minkowski’s inequality on time scales as follows.
Theorem 1.1 Let f , g , h C rd ( [ a , b ] , R ) and 1 / p + 1 / q = 1 with p > 1 . Then
( a b | h ( x ) | | f ( x ) + g ( x ) | p Δ x ) 1 p ( a b | h ( x ) | | f ( x ) | p Δ x ) 1 p + ( a b | h ( x ) | | g ( x ) | p Δ x ) 1 p .
(1.1)
Nabla and diamond-α integral Minkowski’s inequality on time scales was established in [15], which can be stated as follows.
Theorem 1.2 Let f , g , h C ld ( [ a , b ] , R ) and 1 / p + 1 / q = 1 with p > 1 . Then
( a b | h ( x ) | | f ( x ) + g ( x ) | p x ) 1 p ( a b | h ( x ) | | f ( x ) | p x ) 1 p + ( a b | h ( x ) | | g ( x ) | p x ) 1 p .
(1.2)
Theorem 1.3 Let f , g , h : [ a , b ] R be α -integrable functions, and 1 / p + 1 / q = 1 with p > 1 . Then
( a b | h ( x ) | | f ( x ) + g ( x ) | p α x ) 1 p ( a b | h ( x ) | | f ( x ) | p α x ) 1 p + ( a b | h ( x ) | | g ( x ) | p α x ) 1 p .
(1.3)
Throughout paper, we suppose that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-318/MediaObjects/13660_2012_Article_762_IEq9_HTML.gif is a time scale, a , b T with a < b and an interval [ a , b ] means the intersection of a real interval with the given time scale. By a time scale https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2013-318/MediaObjects/13660_2012_Article_762_IEq9_HTML.gif , we mean an arbitrary nonempty closed subset of real numbers. The set of real numbers, integers, natural numbers, and the Cantor set are examples of time scales. But rational numbers, irrational numbers, complex numbers, and the open interval between 0 and 1 are not time scales.
The purpose of this paper is to establish some improvements of Minkowski’s inequality by using the delta integral, the nabla integral and the diamond-α integral on time scales.

2 Main results

In this section, our main results are stated and proved.
Theorem 2.1 Let f , g , h C rd ( [ a , b ] , R ) , p > 0 , s , t R { 0 } , and s t . Let p , s , t R be different, such that s , t > 1 and ( s t ) / ( p t ) > 1 . Then
a b | h ( x ) | | f ( x ) + g ( x ) | p Δ x [ ( a b | h ( x ) | | f ( x ) | s Δ x ) 1 s + ( a b | h ( x ) | | g ( x ) | s Δ x ) 1 s ] s ( p t ) / ( s t ) × [ ( a b | h ( x ) | | f ( x ) | t Δ x ) 1 t + ( a b | h ( x ) | | g ( x ) | t Δ x ) 1 t ] t ( s p ) / ( s t ) .
(2.1)
Proof We have ( s t ) / ( p t ) > 1 , and in view of
a b | h ( x ) | | f ( x ) + g ( x ) | p Δ x = a b | h ( x ) | ( | f ( x ) + g ( x ) | s ) ( p t ) / ( s t ) ( | f ( x ) + g ( x ) | t ) ( s p ) / ( s t ) Δ x ,
by using Hölder’s inequality in [13, 14] with indices ( s t ) / ( p t ) and ( s t ) / ( s p ) , we have
a b | h ( x ) | | f ( x ) + g ( x ) | p Δ x ( a b | h ( x ) | | f ( x ) + g ( x ) | s Δ x ) ( p t ) / ( s t ) ( a b | h ( x ) | | f ( x ) + g ( x ) | t Δ x ) ( s p ) / ( s t ) .
(2.2)
On the other hand, by using Minkowski’s inequality (1.1) for s > 1 and t > 1 , respectively, we obtain
( a b | h ( x ) | | f ( x ) + g ( x ) | s Δ x ) 1 s ( a b | h ( x ) | | f ( x ) | s Δ x ) 1 s + ( a b | h ( x ) | | g ( x ) | s Δ x ) 1 s ,
(2.3)
and
( a b | h ( x ) | | f ( x ) + g ( x ) | t Δ x ) 1 t ( a b | h ( x ) | | f ( x ) | t Δ x ) 1 t + ( a b | h ( x ) | | g ( x ) | t Δ x ) 1 t .
(2.4)
From (2.2), (2.3) and (2.4), this completes the proof of Theorem 2.1. □
Remark 2.1 For Theorem 2.1, for p > 1 , letting s = p + ε , t = p ε , when p, s, t are different, s , t > 1 , and letting ε 0 , we obtain (1.1).
Theorem 2.2 Let f , g , h C rd ( [ a , b ] , R ) , p > 0 , s , t R { 0 } , and s t . Let p , s , t R be different, such that s , t < 1 and s , t 0 , and ( s t ) / ( p t ) < 1 . Then
a b | h ( x ) | | f ( x ) + g ( x ) | p Δ x [ ( a b | h ( x ) | | f ( x ) | s Δ x ) 1 s + ( a b | h ( x ) | | g ( x ) | s Δ x ) 1 s ] s ( p t ) / ( s t ) × [ ( a b | h ( x ) | | f ( x ) | t Δ x ) 1 t + ( a b | h ( x ) | | g ( x ) | t Δ x ) 1 t ] t ( s p ) / ( s t ) .
(2.5)
Proof We have ( s t ) / ( p t ) < 1 , and in view of
a b | h ( x ) | | f ( x ) + g ( x ) | p Δ x = a b | h ( x ) | ( | f ( x ) + g ( x ) | s ) ( p t ) / ( s t ) ( | f ( x ) + g ( x ) | t ) ( s p ) / ( s t ) Δ x ,
by using reverse Hölder’s inequality in [13, 14] with indices ( s t ) / ( p t ) and ( s t ) / ( s p ) , we obtain
a b | h ( x ) | | f ( x ) + g ( x ) | p Δ x ( a b | h ( x ) | | f ( x ) + g ( x ) | s Δ x ) ( p t ) / ( s t ) ( a b | h ( x ) | | f ( x ) + g ( x ) | t Δ x ) ( s p ) / ( s t ) .
(2.6)
On the other hand, in view of Minkowski’s inequality (see [17]) for the cases of s < 1 and t < 1 ,
( a b | h ( x ) | | f ( x ) + g ( x ) | s Δ x ) 1 s ( a b | h ( x ) | | f ( x ) | s Δ x ) 1 s + ( a b | h ( x ) | | g ( x ) | s Δ x ) 1 s ,
(2.7)
and
( a b | h ( x ) | | f ( x ) + g ( x ) | t Δ x ) 1 t ( a b | h ( x ) | | f ( x ) | t Δ x ) 1 t + ( a b | h ( x ) | | g ( x ) | t Δ x ) 1 t .
(2.8)
Combining (2.6), (2.7) and (2.8), this completes the proof of Theorem 2.2. □
Theorem 2.3 Let f , g , h C ld ( [ a , b ] , R ) , p > 0 , s , t R { 0 } , and s t . Let p , s , t R be different, such that s , t > 1 and ( s t ) / ( p t ) > 1 . Then
a b | h ( x ) | | f ( x ) + g ( x ) | p x [ ( a b | h ( x ) | | f ( x ) | s x ) 1 s + ( a b | h ( x ) | | g ( x ) | s x ) 1 s ] s ( p t ) / ( s t ) × [ ( a b | h ( x ) | | f ( x ) | t x ) 1 t + ( a b | h ( x ) | | g ( x ) | t x ) 1 t ] t ( s p ) / ( s t ) .
(2.9)
Proof This proof is similar to the proof of Theorem 2.1, so we omit it here. □
Remark 2.2 For Theorem 2.3, for p > 1 , letting s = p + ε , t = p ε , when p, s, t are different, s , t > 1 , and letting ε 0 , we get (1.2).
Theorem 2.4 Let f , g , h C ld ( [ a , b ] , R ) , p > 0 , s , t R { 0 } , and s t . Let p , s , t R be different, such that s , t < 1 and s , t 0 , and ( s t ) / ( p t ) < 1 . Then
a b | h ( x ) | | f ( x ) + g ( x ) | p x [ ( a b | h ( x ) | | f ( x ) | s x ) 1 s + ( a b | h ( x ) | | g ( x ) | s x ) 1 s ] s ( p t ) / ( s t ) × [ ( a b | h ( x ) | | f ( x ) | t x ) 1 t + ( a b | h ( x ) | | g ( x ) | t x ) 1 t ] t ( s p ) / ( s t ) .
(2.10)
Proof The proof of Theorem 2.4 is similar to the proof of Theorem 2.2, so we omit it here. □
Theorem 2.5 Let f , g , h : [ a , b ] R be α -integrable functions, p > 0 , s , t R { 0 } , and s t . Let p , s , t R be different, such that s , t > 1 and ( s t ) / ( p t ) > 1 . Then
a b | h ( x ) | | f ( x ) + g ( x ) | p α x [ ( a b | h ( x ) | | f ( x ) | s α x ) 1 s + ( a b | h ( x ) | | g ( x ) | s α x ) 1 s ] s ( p t ) / ( s t ) × [ ( a b | h ( x ) | | f ( x ) | t α x ) 1 t + ( a b | h ( x ) | | g ( x ) | t α x ) 1 t ] t ( s p ) / ( s t ) .
(2.11)
Proof This theorem is a direct extension of Theorem 2.1 and Theorem 2.3, so we omit this proof here. □
Remark 2.3 For Theorem 2.5, for p > 1 , letting s = p + ε , t = p ε , when p, s, t are different, s , t > 1 , and letting ε 0 , we get (1.3).
Theorem 2.6 Let f , g , h : [ a , b ] R be α -integrable functions, p > 0 , s , t R { 0 } , and s t . Let p , s , t R be different, such that s , t < 1 and s , t 0 , and ( s t ) / ( p t ) < 1 . Then
a b | h ( x ) | | f ( x ) + g ( x ) | p α x [ ( a b | h ( x ) | | f ( x ) | s α x ) 1 s + ( a b | h ( x ) | | g ( x ) | s α x ) 1 s ] s ( p t ) / ( s t ) × [ ( a b | h ( x ) | | f ( x ) | t α x ) 1 t + ( a b | h ( x ) | | g ( x ) | t α x ) 1 t ] t ( s p ) / ( s t ) .
(2.12)
Proof This theorem is a direct extension of Theorem 2.2 and Theorem 2.4, so we omit this proof here. □
Remark 2.4 For α = 1 , inequality (2.11) reduces to inequality (2.1), inequality (2.12) reduces to inequality (2.5). For α = 0 , inequality (2.11) reduces to inequality (2.9), inequality (2.12) reduces to inequality (2.10). For T = R , the main results of this paper reduce to the results in [18].
Remark 2.5 The results of this paper can be given for more general time-scale integrals, for example, Lebesgue time-scale integrals in [19] or even multiple Lebesgue time-scale integrals in [20].

Acknowledgements

The author thanks the editor and the referees for their valuable suggestions to improve the quality of this paper. This work was supported by Scientific Research Project of Guangxi Education Department (no. 201204LX672).
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The author declares that he has no competing interests.
Literatur
1.
Zurück zum Zitat Hilger, S: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD thesis, Universität Würzburg (1988) Hilger, S: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD thesis, Universität Würzburg (1988)
2.
Zurück zum Zitat Hilger S: Analysis on measure chains - a unified approach to continuous and discrete calculus. Results Math. 1990, 18: 18–56. 10.1007/BF03323153MathSciNetCrossRef Hilger S: Analysis on measure chains - a unified approach to continuous and discrete calculus. Results Math. 1990, 18: 18–56. 10.1007/BF03323153MathSciNetCrossRef
3.
Zurück zum Zitat Agarwal RP, Bohner M: Basic calculus on time scales and some of its applications. Results Math. 1999, 35(1–2):3–22. 10.1007/BF03322019MathSciNetCrossRef Agarwal RP, Bohner M: Basic calculus on time scales and some of its applications. Results Math. 1999, 35(1–2):3–22. 10.1007/BF03322019MathSciNetCrossRef
4.
Zurück zum Zitat Atici FM, Guseinov GS: On Green’s functions and positive solutions for boundary value problems on time scales. J. Comput. Appl. Math. 2002, 141: 75–99. 10.1016/S0377-0427(01)00437-XMathSciNetCrossRef Atici FM, Guseinov GS: On Green’s functions and positive solutions for boundary value problems on time scales. J. Comput. Appl. Math. 2002, 141: 75–99. 10.1016/S0377-0427(01)00437-XMathSciNetCrossRef
5.
Zurück zum Zitat Bohner M, Peterson A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston; 2001.CrossRef Bohner M, Peterson A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston; 2001.CrossRef
6.
Zurück zum Zitat Bohner M, Peterson A: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston; 2002. Bohner M, Peterson A: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston; 2002.
7.
Zurück zum Zitat Sheng Q, Fadag M, Henderson J, Davis JM: An exploration of combined dynamic derivatives on time scales and their applications. Nonlinear Anal., Real World Appl. 2006, 7: 395–412. 10.1016/j.nonrwa.2005.03.008MathSciNetCrossRef Sheng Q, Fadag M, Henderson J, Davis JM: An exploration of combined dynamic derivatives on time scales and their applications. Nonlinear Anal., Real World Appl. 2006, 7: 395–412. 10.1016/j.nonrwa.2005.03.008MathSciNetCrossRef
8.
Zurück zum Zitat Ammi MRS, Ferreira RAC, Torres DFM: Diamond- α Jensen’s inequality on time scales. J. Inequal. Appl. 2008., 2008: Article ID 576876 10.1155/2008/576876 Ammi MRS, Ferreira RAC, Torres DFM: Diamond- α Jensen’s inequality on time scales. J. Inequal. Appl. 2008., 2008: Article ID 576876 10.1155/2008/576876
9.
Zurück zum Zitat Rogers JW Jr., Sheng Q: Notes on the diamond- α dynamic derivative on time scales. J. Math. Anal. Appl. 2007, 326(1):228–241. 10.1016/j.jmaa.2006.03.004MathSciNetCrossRef Rogers JW Jr., Sheng Q: Notes on the diamond- α dynamic derivative on time scales. J. Math. Anal. Appl. 2007, 326(1):228–241. 10.1016/j.jmaa.2006.03.004MathSciNetCrossRef
10.
Zurück zum Zitat Malinowska AB, Torres DFM: On the diamond-alpha Riemann integral and mean value theorems on time scales. Dyn. Syst. Appl. 2009, 18(3–4):469–482.MathSciNet Malinowska AB, Torres DFM: On the diamond-alpha Riemann integral and mean value theorems on time scales. Dyn. Syst. Appl. 2009, 18(3–4):469–482.MathSciNet
11.
Zurück zum Zitat Adıvar M, Bohner EA: Halanay type inequalities on time scales with applications. Nonlinear Anal. 2011, 74(18):7519–7531. 10.1016/j.na.2011.08.007MathSciNetCrossRef Adıvar M, Bohner EA: Halanay type inequalities on time scales with applications. Nonlinear Anal. 2011, 74(18):7519–7531. 10.1016/j.na.2011.08.007MathSciNetCrossRef
12.
Zurück zum Zitat Erbe L: Oscillation criteria for second order linear equations on a time scale. Can. Appl. Math. Q. 2001, 9(4):345–375.MathSciNet Erbe L: Oscillation criteria for second order linear equations on a time scale. Can. Appl. Math. Q. 2001, 9(4):345–375.MathSciNet
13.
Zurück zum Zitat Wong FH, Yeh CC, Yu SL, Hong CH: Young’s inequality and related results on time scales. Appl. Math. Lett. 2005, 18: 983–988. 10.1016/j.aml.2004.06.028MathSciNetCrossRef Wong FH, Yeh CC, Yu SL, Hong CH: Young’s inequality and related results on time scales. Appl. Math. Lett. 2005, 18: 983–988. 10.1016/j.aml.2004.06.028MathSciNetCrossRef
14.
Zurück zum Zitat Wong FH, Yeh CC, Lian WC: An extension of Jensen’s inequality on time scales. Adv. Dyn. Syst. Appl. 2006, 1(1):113–120.MathSciNet Wong FH, Yeh CC, Lian WC: An extension of Jensen’s inequality on time scales. Adv. Dyn. Syst. Appl. 2006, 1(1):113–120.MathSciNet
15.
Zurück zum Zitat Özkan UM, Sarikaya MZ, Yildirim H: Extensions of certain integral inequalities on time scales. Appl. Math. Lett. 2008, 21(10):993–1000. 10.1016/j.aml.2007.06.008MathSciNetCrossRef Özkan UM, Sarikaya MZ, Yildirim H: Extensions of certain integral inequalities on time scales. Appl. Math. Lett. 2008, 21(10):993–1000. 10.1016/j.aml.2007.06.008MathSciNetCrossRef
16.
Zurück zum Zitat Anwar M, Bibi R, Bohner M, Pec̆arić J: Integral inequalities on time scales via the theory of isotonic linear functionals. Abstr. Appl. Anal. 2011., 2011: Article ID 483595 Anwar M, Bibi R, Bohner M, Pec̆arić J: Integral inequalities on time scales via the theory of isotonic linear functionals. Abstr. Appl. Anal. 2011., 2011: Article ID 483595
17.
Zurück zum Zitat Kuang JC: Applied Inequalities. Shandong Science and Technology Press, Jinan; 2010. Kuang JC: Applied Inequalities. Shandong Science and Technology Press, Jinan; 2010.
18.
Zurück zum Zitat Zhao CJ, Cheung WS: On Minkowski’s inequality and its application. J. Inequal. Appl. 2011., 2011: Article ID 71 Zhao CJ, Cheung WS: On Minkowski’s inequality and its application. J. Inequal. Appl. 2011., 2011: Article ID 71
19.
Zurück zum Zitat Guseinov GS: Integration on time scales. J. Math. Anal. Appl. 2003, 285: 107–127. 10.1016/S0022-247X(03)00361-5MathSciNetCrossRef Guseinov GS: Integration on time scales. J. Math. Anal. Appl. 2003, 285: 107–127. 10.1016/S0022-247X(03)00361-5MathSciNetCrossRef
20.
Zurück zum Zitat Bohner M, Guseinov GS: Multiple Lebesgue integration on time scales. Adv. Differ. Equ. 2006., 2006: Article ID 26391 Bohner M, Guseinov GS: Multiple Lebesgue integration on time scales. Adv. Differ. Equ. 2006., 2006: Article ID 26391
Metadaten
Titel
Some improvements of Minkowski’s integral inequality on time scales
verfasst von
Guang-Sheng Chen
Publikationsdatum
01.12.2013
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2013
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/1029-242X-2013-318

Weitere Artikel der Ausgabe 1/2013

Journal of Inequalities and Applications 1/2013 Zur Ausgabe

Premium Partner