Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2018

Open Access 01.12.2018 | Research

Some inequalities for generalized eigenvalues of perturbation problems on Hermitian matrices

verfasst von: Yan Hong, Dongkyu Lim, Feng Qi

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2018

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

In the paper, the authors establish some inequalities for generalized eigenvalues of perturbation problems on Hermitian matrices and modify shortcomings of some known inequalities for generalized eigenvalues in the related literature.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Let \(A,B \in\mathbb{C}^{n\times n}\) be Hermitian matrices with B being positive definite. We now consider a perturbation problem for \(A\boldsymbol{x}= \lambda B\boldsymbol{x}\). It is known that the n generalized eigenvalues of the matrix pencil \(\langle A,B\rangle\) are real numbers and that the generalized eigenvalues of \(\langle A,B\rangle\) and the eigenvalues of \(AB^{-1}\) are the same. Without loss of generality, we can line up the eigenvalues of a Hermitian matrix A as
$$\lambda_{1}(A)\ge\lambda_{2}(A)\ge\dotsm\ge \lambda_{n}(A) $$
and order the generalized eigenvalues of \(\langle A,B\rangle\) by
$$\lambda_{1} \bigl(AB^{-1} \bigr)\ge\lambda_{2} \bigl(AB^{-1} \bigr)\ge \dotsm\ge\lambda_{n} \bigl(AB^{-1} \bigr). $$
For a standard Hermitian eigenvalue problem \(A\boldsymbol{x}= \lambda \boldsymbol{x}\), Weyl’s theorem [2] is perhaps the best-known perturbation result. We denote the spectral norm of a matrix by \(\|\cdot\|_{2}\) which is also called the largest singular value or the matrix 2-norm.
We now recall several known conclusions in the literature.
Theorem 1.1
([2, Weyl’s theorem])
Let \(A,E\in\mathbb{C}^{n\times n}\) be Hermitian matrices, and let \(\widetilde{A}=A+E\) be a perturbation of A, then
$$\max_{1\le i\le n} \bigl\vert \lambda_{i}(A)- \lambda_{i} (\widetilde {A} ) \bigr\vert \le \Vert E \Vert _{2}. $$
Theorem 1.2
([3])
Let \(A,E\in\mathbb{C}^{n\times n}\) be Hermitian matrices, and let \(\widetilde{A}=A+E\) be a perturbation of A, then
$$ \bigl\vert \lambda (\widetilde{A} )-\lambda(A) \bigr\vert \le\bigl( \Vert A \Vert _{2}+ \Vert E \Vert _{2}\bigr)^{1-1/n} \Vert E \Vert _{2}^{1/n}. $$
Theorem 1.3
([1, 4])
Let \(A,B \in\mathbb{C}^{n\times n}\) be Hermitian matrices, and let B be a positive definite Hermitian matrix. Then the equalities
$$\lambda_{i} \bigl(A B^{-1} \bigr)=\max_{\substack{S\subseteq\mathbb {C}^{n}\\ \dim S=i}} \min_{0\ne\boldsymbol{x}\in S} \biggl\{ \frac{\boldsymbol {x}^{*}A\boldsymbol{x}}{ \boldsymbol{x}^{*} B\boldsymbol{x}} \biggr\} =\min _{\substack{T\subseteq\mathbb{C}^{n}\\ \dim T=n-i+1}} \max_{0\ne\boldsymbol{x}\in T} \biggl\{ \frac{\boldsymbol{x}^{*}A\boldsymbol{x}}{\boldsymbol {x}^{*}B\boldsymbol{x}} \biggr\} $$
hold for \(1\le i\le n\). In particular, if \(B=I_{n}\), we have
$$ \lambda_{i}(A) =\max_{\substack{S\subseteq\mathbb{C}^{n}\\ \dim S=i}} \min _{0\ne\boldsymbol{x}\in S} \boldsymbol{x}^{*}A\boldsymbol{x} =\min _{\substack{T\subseteq\mathbb{C}^{n}\\ \dim T=n-i+1}} \max_{0\ne\boldsymbol{x}\in T} \boldsymbol{x}^{*}A\boldsymbol {x},\quad1\le i\le n. $$
Theorem 1.4
([5, p. 336])
Let \(A,B \in\mathbb{C}^{n\times n}\) be Hermitian matrices and \(i,j,k,\ell,\hbar\in\mathbb{N}\) with \(j+k-1\le i\le\ell+\hbar -n-1\). Then
$$ \lambda_{\ell}(A)+\lambda_{\hbar}(A)\le\lambda_{i}(A+B) \le\lambda _{j}(A)+\lambda_{k}(B). $$
In particular, we have
$$ \lambda_{i}(A)+\lambda_{n}(B)\le\lambda_{i}(A+B) \le\lambda _{i}(A)+\lambda_{1}(B). $$
Let \(A,E\in\mathbb{C}^{n\times n}\) be Hermitian matrices, B be a positive definite Hermitian matrix,
$$\widetilde{B}=B+E,\qquad\beta_{n}=\min_{1\le i\le n} \lambda_{i}(B), \qquad \mu=\frac{ \Vert E \Vert _{2}}{\beta_{n}}=\frac{ \Vert E \Vert _{2}}{\lambda_{n}(B)}. $$
Then μ is a sufficient condition for to be a Hermitian positive definite matrix.
Theorem 1.5
([4])
Let \(A,B,H,E \in\mathbb{C}^{n\times n}\) be Hermitian matrices, B be a positive definite Hermitian matrix, and \(\widetilde{B}=B+E\). If \(\mu =\frac{\|E\|_{2}}{\lambda_{n}(B)}<1\), then the double inequality
$$ (1-\mu)\lambda_{i} \bigl(AB^{-1} \bigr)+ \lambda_{n} \bigl(HB^{-1} \bigr) \le\lambda_{i} \bigl((A+H)\widetilde{B}^{-1} \bigr) \le\frac{\lambda_{i} (AB^{-1} )+\lambda_{1} (HB^{-1} )}{1-\mu} $$
is valid for all \(1\le i\le n\).
Theorem 1.6
([4])
Let \(A,B,H,E \in\mathbb{C}^{n\times n}\) be Hermitian matrices, B be a positive definite Hermitian matrix, and \(\widetilde{B}=B+E\). If \(\varepsilon\triangleq\max_{1\le i\le n} |\lambda_{i} (EB^{-1} ) |<1\), then the double inequality
$$ (1-\varepsilon)\lambda_{i} \bigl(AB^{-1} \bigr)+ \lambda_{n} \bigl(HB^{-1} \bigr) \le\lambda_{i} \bigl((A+H)\widetilde{B}^{-1} \bigr) \le\frac{\lambda_{i} (AB^{-1} )+\lambda_{1} (HB^{-1} )}{1-\varepsilon} $$
is valid for all \(1\le i\le n\).
Remark 1.1
Let
$$A =\operatorname {diag}(-3, -2),\qquad B=\operatorname {diag}(3, 4),\qquad H =I_{2}, \qquad E=\operatorname {diag}(2, 1). $$
Then
$$ \lambda_{2} \bigl(HB^{-1} \bigr)+(1-\mu)\lambda_{2} \bigl(AB^{-1} \bigr)=\frac{1}{3} >0 = \lambda_{2} \bigl((A+H)\widetilde{B}^{-1} \bigr). $$
Let
$$A=\operatorname {diag}(-3,-2),\qquad B=\operatorname {diag}(3,4),\qquad H =-2I_{n},\qquad E=\operatorname {diag}(2,1). $$
Then
$$ \lambda_{1} \bigl((A+H)\widetilde{B}^{-1} \bigr) =- \frac{4}{5} >-3=\frac{\lambda_{1} (AB^{-1} )+\lambda_{1} (HB^{-1} )}{1-\varepsilon}. $$
These two examples demonstrate that Theorems 1.5 and 1.6 are not necessarily true.
In this paper, we will establish some inequalities of perturbation problems for generalized eigenvalues.

2 Main results

We are now in a position to state and prove our main results in this paper.
Theorem 2.1
Let \(A,B,H,E \in\mathbb{C}^{n\times n}\) be Hermitian matrices, B be a positive definite Hermitian matrix, and \(\widetilde{B}=B+E\). If \(\mu =\frac{\|E\|_{2}}{\lambda_{n}(B)}<1\) and \(i,j,k,\ell,\hbar\in\mathbb {N}\) with \(j+k-1\le i\le\ell+\hbar-n-1\), then
1.
when \(\lambda_{i}(A+H)\ge0\), we have
$$ \frac{\lambda_{\ell}(AB^{-1} )+\lambda_{\hbar} (HB^{-1} )}{1+\mu} \le\lambda_{i} \bigl((A+H) \widetilde{B}^{-1} \bigr) \le\frac{\lambda_{j} (AB^{-1} )+\lambda_{k} (HB^{-1} )}{1-\mu}; $$
 
2.
when \(\lambda_{i}(A+H)\le0\), we have
$$ \frac{\lambda_{j} (AB^{-1} )+\lambda_{k} (HB^{-1} )}{1-\mu} \le\lambda_{i} \bigl((A+H) \widetilde{B}^{-1} \bigr) \le\frac{\lambda_{\ell}(AB^{-1} )+\lambda_{\hbar} (HB^{-1} )}{1+\mu}. $$
 
Proof
Since \(B^{-1/2}(A+H)B^{-1/2}\) is a Hermitian matrix, then there exists an orthogonal matrix \(U=(\boldsymbol{u}_{1},\boldsymbol{u}_{2},\dotsc,\boldsymbol{u}_{n})\in \mathbb{C}^{n\times n}\) such that
$$ B^{-1/2}(A+H)B^{-1/2}=U^{*}\operatorname {diag}\bigl(\lambda_{1} \bigl((A+H)B^{-1} \bigr),\dotsc,\lambda_{n} \bigl((A+H)B^{-1} \bigr) \bigr)U. $$
Let
$$ T_{i}=\operatorname{Span} (\boldsymbol{u}_{i}, \boldsymbol{u}_{i+1},\dotsc,\boldsymbol{u}_{n} ),\quad1\le i\le n. $$
By virtue of Theorems 1.3 and 1.4, if \(j+k-1\le i\le\ell+\hbar-n-1\), we have
$$ \begin{aligned}[b] \lambda_{i} \bigl((A+H)\widetilde{B}^{-1} \bigr) &\le\max_{0\ne\boldsymbol{x}\in T} \biggl\{ \frac{\boldsymbol{x}^{*}B^{-1/2}(A+H)B^{-1/2}\boldsymbol{x}}{ \boldsymbol{x}^{*} (I_{n}+B^{-1/2}EB^{-1/2} )\boldsymbol {x}} \biggr\} \\ &\le \textstyle\begin{cases} \frac{1}{1-\mu}\max_{0\ne\boldsymbol{x}\in T} \{\frac{\boldsymbol{x}^{*}B^{-1/2}(A+H)B^{-1/2}\boldsymbol{x}}{\boldsymbol{x}^{*}\boldsymbol{x}} \},&\lambda_{i}(A+H)\ge0; \\ \frac{1}{1+\mu}\max_{0\ne\boldsymbol{x}\in T} \{\frac{\boldsymbol{x}^{*}B^{-1/2}(A+H)B^{-1/2}\boldsymbol{x}}{\boldsymbol{x}^{*}\boldsymbol{x}} \},&\lambda_{i}(A+H)< 0 \end{cases}\displaystyle \\ &= \textstyle\begin{cases} \frac{1}{1-\mu}\lambda_{i} ((A+H)B^{-1} ),&\lambda _{i}(A+H)\ge0; \\ \frac{1}{1+\mu}\lambda_{i} ((A+H)B^{-1} ),&\lambda _{i}(A+H)< 0 \end{cases}\displaystyle \\ &\le \textstyle\begin{cases} \frac{\lambda_{j} (AB^{-1} )+\lambda_{k} (HB^{-1} )}{1-\mu},&\lambda_{i}(A+H)\ge0; \\ \frac{\lambda_{\ell}(AB^{-1} )+\lambda_{\hbar} (HB^{-1} )}{1+\mu},&\lambda_{i}(A+H)< 0. \end{cases}\displaystyle \end{aligned} $$
(2.1)
Similarly, we have
$$ \lambda_{i} \bigl((A+H)\widetilde{B}^{-1} \bigr) \ge \textstyle\begin{cases} \frac{\lambda_{\ell}(AB^{-1} )+\lambda_{\hbar} (HB^{-1} )}{1+\mu}, &\lambda_{i}(A+H)\ge0;\\ \frac{\lambda_{j} (AB^{-1} )+\lambda_{k} (HB^{-1} )}{1-\mu}, &\lambda_{i}(A+H)< 0. \end{cases} $$
(2.2)
The proof of Theorem 2.1 is complete. □
Corollary 2.1
Let \(A,B,H,E \in\mathbb{C}^{n\times n}\) be Hermitian matrices, B be a positive definite Hermitian matrix, and \(\widetilde{B}=B+E\). If \(\mu =\frac{\|E\|_{2}}{\lambda_{n}(B)}<1\), then
1.
when \(\lambda_{i}(A+H)\ge0\) for \(1\le i\le n\),
$$ \frac{\lambda_{i} (AB^{-1} )+\lambda_{n} (HB^{-1} )}{1+\mu} \le\lambda_{i} \bigl((A+H) \widetilde{B}^{-1} \bigr) \le\frac{\lambda_{i} (AB^{-1} )+\lambda_{1} (HB^{-1} )}{1-\mu}; $$
 
2.
when \(\lambda_{i}(A+H)\le0\) for \(1\le i\le n\),
$$ \frac{\lambda_{i} (AB^{-1} )+\lambda_{1} (HB^{-1} )}{1-\mu} \le\lambda_{i} \bigl((A+H) \widetilde{B}^{-1} \bigr) \le\frac{\lambda_{i} (AB^{-1} )+\lambda_{n} (HB^{-1} )}{1+\mu}. $$
 
Corollary 2.2
Let \(A,B,H,E \in\mathbb{C}^{n\times n}\) be Hermitian matrices, B be a positive definite Hermitian matrix, and \(\widetilde{B}=B+E\). If \(\mu =\frac{\|E\|_{2}}{\lambda_{n}(B)}<1\), then
1.
when \(\lambda_{i}(A+H)\ge0\) for \(1\le i\le n\), then
$$ \frac{1}{1+\mu} \biggl[\lambda_{i} \bigl(AB^{-1} \bigr)-\frac{\|H\| }{\lambda_{n}(B)} \biggr] \le\lambda_{i} \bigl((A+H) \widetilde{B}^{-1} \bigr) \le\frac{1}{1-\mu} \biggl[\lambda_{i} \bigl(AB^{-1} \bigr)+\frac{\| H\|}{\lambda_{n}(B)} \biggr]; $$
 
2.
when \(\lambda_{i}(A+H)\le0\) for \(1\le i\le n\), then
$$ \frac{1}{1-\mu} \biggl[\lambda_{i} \bigl(AB^{-1} \bigr)-\frac{\|H\| }{\lambda_{n}(B)} \biggr] \le\lambda_{i} \bigl((A+H) \widetilde{B}^{-1} \bigr) \le\frac{1}{1+\mu} \biggl[\lambda_{i} \bigl(AB^{-1} \bigr)+\frac{\| H\|}{\lambda_{n}(B)} \biggr]. $$
 
Theorem 2.2
Let \(A,B,H,E \in\mathbb{C}^{n\times n}\) be Hermitian matrices, B be a positive definite Hermitian matrix, and \(\widetilde{B}=B+E\). If \(\varepsilon=\max_{1\le i\le n} |\lambda_{i} (EB^{-1} ) |<1\), then
1.
when \(\lambda_{i}(A+H)\ge0\) for \(1\le i\le n\),
$$ \frac{\lambda_{i} (AB^{-1} )+\lambda_{n} (HB^{-1} )}{1+\varepsilon} \le\lambda_{i} \bigl((A+H) \widetilde{B}^{-1} \bigr) \le\frac{\lambda_{i} (AB^{-1} )+\lambda_{1} (HB^{-1} )}{1-\varepsilon}; $$
 
2.
when \(\lambda_{i}(A+H)\le0\) for \(1\le i\le n\),
$$ \frac{\lambda_{i} (AB^{-1} )+\lambda_{1} (HB^{-1} )}{1-\varepsilon} \le\lambda_{i} \bigl((A+H) \widetilde{B}^{-1} \bigr) \le\frac{\lambda_{i} (AB^{-1} )+\lambda_{n} (HB^{-1} )}{1+\varepsilon}. $$
 
Proof
Using inequalities (2.1) and (2.2), we obtain the required results. The proof of Theorem 2.2 is thus complete. □
Theorem 2.3
Let \(A,B,H,E \in\mathbb{C}^{n\times n}\) be Hermitian matrices, B be a positive definite Hermitian matrix, and \(\widetilde{B}=B+E\). If \(\mu =\frac{\|E\|_{2}}{\lambda_{n}(B)}<1\), then
$$\begin{aligned} \beta_{i}(A)\lambda_{i} \bigl(AB^{-1} \bigr)+\beta_{n}(H)\lambda_{n} \bigl(HB^{-1} \bigr) &\le\lambda_{i} \bigl((A+H)\widetilde{B}^{-1} \bigr) \\ &\le\alpha_{i} (A)\lambda_{i} \bigl(AB^{-1} \bigr)+\alpha_{1}(H)\lambda _{1} \bigl(HB^{-1} \bigr)\end{aligned} $$
for \(1\le i\le n\), where
$$ \alpha_{i} (A)= \textstyle\begin{cases} \frac{1}{1-\mu}, &\lambda_{i} (A)\ge0;\\ \frac{1}{1+\mu}, &\lambda_{i} (A)< 0 \end{cases}\displaystyle \quad \textit{and}\quad \beta_{i} (A)= \textstyle\begin{cases} \frac{1}{1-\mu}, &\lambda_{i}(A)< 0;\\ \frac{1}{1+\mu}, &\lambda_{i}(A)\ge0. \end{cases} $$
Proof
Since
$$\begin{aligned} \lambda_{i} \bigl(\widetilde{B}^{-1/2} A\widetilde{B}^{-1/2} \bigr) +\lambda_{n} \bigl(\widetilde{B}^{-1/2} H \widetilde{B}^{-1/2} \bigr) &\le\lambda_{i} \bigl((A+H) \widetilde{B}^{-1} \bigr) \\ &\le\lambda_{i} \bigl(\widetilde{B}^{-1/2} A\widetilde {B}^{-1/2} \bigr) +\lambda_{1} \bigl(\widetilde{B}^{-1/2} H\widetilde{B}^{-1/2} \bigr)\end{aligned} $$
for \(1\le i\le n\). From inequalities in (2.1) and (2.2), it follows that
$$\begin{gathered} \beta_{i} (A)\lambda_{i} \bigl(AB^{-1} \bigr) \le \lambda_{i} \bigl(\widetilde{B}^{-1/2}A\widetilde{B}^{-1/2} \bigr) =\lambda_{i} \bigl(A\widetilde{B}^{-1} \bigr)\le \alpha_{i} (A)\lambda _{i} \bigl(AB^{-1} \bigr), \\ \beta_{n}(H)\lambda_{n} \bigl(HB^{-1} \bigr)\le \lambda_{n} \bigl(H\widetilde{B}^{-1} \bigr),\qquad \lambda_{1} \bigl(H\widetilde{B}^{-1} \bigr)\le \alpha_{1}(H)\lambda _{1} \bigl(AB^{-1} \bigr) \end{gathered}$$
for \(1\le i\le n\). The proof of Theorem 2.3 is complete. □

Acknowledgements

The authors appreciate the anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
4.
Zurück zum Zitat Huang, L.: Some perturbation problems for the generalized eigenvalues. Acta Sci. Nat. Univ. Pekin. 1978 22–27 (1978) MathSciNet Huang, L.: Some perturbation problems for the generalized eigenvalues. Acta Sci. Nat. Univ. Pekin. 1978 22–27 (1978) MathSciNet
Metadaten
Titel
Some inequalities for generalized eigenvalues of perturbation problems on Hermitian matrices
verfasst von
Yan Hong
Dongkyu Lim
Feng Qi
Publikationsdatum
01.12.2018
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2018
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1749-0

Weitere Artikel der Ausgabe 1/2018

Journal of Inequalities and Applications 1/2018 Zur Ausgabe

Premium Partner