Skip to main content

2020 | OriginalPaper | Buchkapitel

Some Observations on Thermodynamic Basis of Pressure Continuum Condition and Consequences of Its Violation in Discretised CFD

verfasst von : A. W. Date

Erschienen in: 50 Years of CFD in Engineering Sciences

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

CFD is concerned with solution of Navier–Stokes (NS) equations in discretised space. It is important, therefore, to ensure that the discretised equations and their solutions obey the continuum condition embedded in Stokes’s stress–strain laws for an isotropic continuum fluid. In this paper, it is shown that adherence to this condition leads to three important conceptual/algorithmic outcomes: 1. Prevention of zig-zag pressure distribution when NS equations are solved for incompressible flow of a single fluid on colocated grids. 2. Prevention of loss of volume/mass at large times when NS equations are solved for interfacial incompressible flows of multi-fluids within single-fluid formalism. 3. Evaluation of surface tension force in interfacial flows without using phenomenology embedded in the definition of the surface tension coefficient. All the above benefits are justified on the basis of a thermodynamic principle rarely invoked in discretised CFD. A few problems are solved by way of case studies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
This can be appreciated from the Avogadro’s number which specifies that at normal temperature and pressure, a gas will contain \(6.022 \times 10^{26}\) molecules per kmol. Thus in air, for example, there will be \(10^{16}\) molecules per \(\text {mm}^{3}\).
 
2
In [27], symbol \(\overline{\sigma } = (\sum _{i=1}^{3}\,\sigma _{xi})/3\) is used. Here, \(\overline{p} = - \overline{\sigma }\) is preferred. Both \(\overline{p}\) and q are newly introduced to serve a pedagogic purpose.
 
3
It is important to recognise that in discretised CFD, the incompressible condition (\(\bigtriangledown \,.\,V_{f}\) = 0) is defined in terms of CV face velocities \(u_{fi}\) as shown in Fig. 1. In fact, when this definition is explicitly implemented, there results the SIMPLE staggered grid procedure of Patankar and Spalding [19]. Further, \(u_{fi}\) must satisfy momentum equations. In a continuum, \(u_{fi}\) and \(u_{i}\) fields coincide but in a discretised space, it is important to distinguish them. This will become apparent in the next section.
 
4
In passing we note that in all three cases, it can be verified that the quantity q is invariant under rotation of the coordinate system or interchange of axes. This property ensures isotropy [27].
 
5
Analysis of the discretised equations presented in the next section shows that \(\lambda = 0.5\).
 
6
Equation 16 is validated in Eqs. 3943 for a two-dimensional flow.
 
7
In deriving Eq. 20, it is assumed that \(\sum \,A_{k}\,u^{'}_{fi,k} = 0\). This is consistent with the staggered grid practice [19].
 
8
Incidentally, in the literature, several different types of interpolations have been proposed. Some of these are given below by way of example.
  • Rhie and Chow [24] (1D Pressure gradient interpolation)
    $$\begin{aligned} u_{f1,e}= & {} \overline{u}_{1,e} - \frac{\Delta V}{AP^{u}}\,\left[ \frac{\partial p}{\partial x_{1}}\,|_{e} - \overline{\frac{\partial p}{\partial x_{1}}}\,|_{e} \, \right] \nonumber \\ \text{ where } \overline{\frac{\partial p}{\partial x_{1}}}\,|_{e}= & {} \frac{1}{2}\,\left[ \frac{\partial p}{\partial x_{1}}\,|_{P} + \frac{\partial p}{\partial x_{1}}\,|_{E} \,\right] \end{aligned}$$
    (33)
  • Peric [8] (1D Mom-Outflow interpolation)
    $$\begin{aligned} u_{f1,e} = \frac{1}{2}\,\left[ \frac{\sum A_{k}\,u_{1,k}}{AP^{u_{1}}}\,|_{P} + \frac{\sum A_{k}\,u_{1,k}}{AP^{u_{1}} }\,|_{E} \,\right] - \frac{\Delta V}{AP^{u}}\,\frac{\partial p}{\partial x_{1}}\,|_{e} \end{aligned}$$
    (34)
  • Thiart [34] (Power Law Scheme [20])
    $$\begin{aligned} u_{f1,e}= & {} \theta \,u_{1,P} + ( 1 - \theta )\,u_{1,E} \text{ where } \nonumber \\ \theta ( Pc_{e} )= & {} \left[ Pc_{e} - 1 + \text{ max }(0,-Pc_{e})\right] /Pc_{e} \nonumber \\+ & {} \text{ max }\left\{ 0, ( 1 - 0.1|Pc_{e}|)^{5}\right\} /Pc_{e} \end{aligned}$$
    (35)
    where cell-face Reynolds/Peclet number \(Pc_{e} = ({\rho _{m}\,u_{f1}\Delta x_{1}}/{\mu })_{e}\).
 
9
Equations 3943 justify the assertion made in Eqs. 15 and 16 for a two-dimensional flow.
 
10
This is unlike the staggered grid practice in which the mass error is estimated from discretised version of Eq. 1.
 
11
Incidentally, the superficial viscosity is now evaluated as \(\mu _{m} = F\,\mu _{a} + ( 1 - F )\,\mu _{b}\).
 
12
In all problems, the convective terms are discretised using a Total Variation Diminishing (TVD) scheme [14] to minimise interface smearing around \(F = 0.5\). Implementation details are given in [17].
 
13
Volume error is defined as
$$\begin{aligned} \text{ Error }\,(t) = \left( \sum \,F_{i,j}\,\Delta V_{i,j}\right) / \left( \sum \,F^{0}_{i,j}\,\Delta V_{i,j}\right) \end{aligned}$$
(72)
where \(F^{0}\) is the initial F-distribution at \(t = 0\) and \(\Delta V_{i,j}\) is the volume of the cell surrounding node (ij).
 
14
This ignores the fact that \(\sigma \) is essentially a property of a specified fluid pair (ab).
 
Literatur
1.
Zurück zum Zitat Andrillon, Y., & Alessandrini, B. (2004). A 2D+T VOF fully coupled formulation for the calculation of breaking free-surface flow. Journal of Marine Science and Technology, 8, 159–168. Andrillon, Y., & Alessandrini, B. (2004). A 2D+T VOF fully coupled formulation for the calculation of breaking free-surface flow. Journal of Marine Science and Technology, 8, 159–168.
2.
Zurück zum Zitat Daly, B. J. (1969). Numerical study of the effect of surface tension on interface instability. Physics of Fluids, 17(7), 1340–1354.CrossRef Daly, B. J. (1969). Numerical study of the effect of surface tension on interface instability. Physics of Fluids, 17(7), 1340–1354.CrossRef
3.
Zurück zum Zitat Date, A. W. (1998). Solution of Navier-Stokes equations on non-staggered grids at all speeds. Numerical Heat Transfer, Part B, 33, 451.CrossRef Date, A. W. (1998). Solution of Navier-Stokes equations on non-staggered grids at all speeds. Numerical Heat Transfer, Part B, 33, 451.CrossRef
4.
Zurück zum Zitat Date, A. W. (2002). SIMPLE procedure on structured and unstructured meshes with collocated variables. In Proceedings of the 12th International Heat Transfer Conference, Grenoble, France. Date, A. W. (2002). SIMPLE procedure on structured and unstructured meshes with collocated variables. In Proceedings of the 12th International Heat Transfer Conference, Grenoble, France.
5.
Zurück zum Zitat Date, A. W. (2004). Fluid dynamic view of pressure checker-boarding problem and smoothing pressure correction on meshes with collocated variables. International Journal of Heat and Mass Transfer, 48, 4885–4898.MATH Date, A. W. (2004). Fluid dynamic view of pressure checker-boarding problem and smoothing pressure correction on meshes with collocated variables. International Journal of Heat and Mass Transfer, 48, 4885–4898.MATH
6.
Zurück zum Zitat Date, A. (2005). Introduction to computational fluid dynamics. New York: Cambridge University Press. Date, A. (2005). Introduction to computational fluid dynamics. New York: Cambridge University Press.
7.
Zurück zum Zitat Date, A. W. (2008). Computational fluid dynamics. In Kirk-Othmer encyclopedia of chemical technology, NY, USA. Date, A. W. (2008). Computational fluid dynamics. In Kirk-Othmer encyclopedia of chemical technology, NY, USA.
8.
Zurück zum Zitat Ferziger, J. H., & Peric, M. (1999). Computational methods for fluid dynamics (2nd ed.). Springer. Ferziger, J. H., & Peric, M. (1999). Computational methods for fluid dynamics (2nd ed.). Springer.
9.
Zurück zum Zitat Gerlach, D., Tomar, G., Biswas, G., & Durst, F. (2005). Comparison of volume-of-fluid methods for surface tension dominant two phase flows. International Journal of Heat and Mass Transfer, 49, 740–754. Gerlach, D., Tomar, G., Biswas, G., & Durst, F. (2005). Comparison of volume-of-fluid methods for surface tension dominant two phase flows. International Journal of Heat and Mass Transfer, 49, 740–754.
10.
Zurück zum Zitat Holman, J. P. (1980). Thermodynamics (3rd ed.). Tokyo: McGraw-Hill Kogakusha. Holman, J. P. (1980). Thermodynamics (3rd ed.). Tokyo: McGraw-Hill Kogakusha.
11.
Zurück zum Zitat Jagad, P. I., Puranik, B. P., & Date, A. W. (2015). A novel concept of measuring mass flow rates using flow induced stresses. SADHANA, 40(Part 5), 1555–1566. Jagad, P. I., Puranik, B. P., & Date, A. W. (2015). A novel concept of measuring mass flow rates using flow induced stresses. SADHANA, 40(Part 5), 1555–1566.
12.
Zurück zum Zitat Jun, L., & Spalding, D. B. (1988). Numerical simulation of flows with moving interfaces. Physico-Chemical Hydrodynamics, 10, 625–637. Jun, L., & Spalding, D. B. (1988). Numerical simulation of flows with moving interfaces. Physico-Chemical Hydrodynamics, 10, 625–637.
13.
Zurück zum Zitat Karki, K. C., & Patankar, S. V. (1988). A pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations. In AIAA 26th Aerospace Science Meeting, Paper No AIAA-88-0058, Nevada, USA. Karki, K. C., & Patankar, S. V. (1988). A pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations. In AIAA 26th Aerospace Science Meeting, Paper No AIAA-88-0058, Nevada, USA.
14.
Zurück zum Zitat Lin, C. H., & Lin, C. A. (1997). Simple high-order bounded convection scheme to model discontinuities. AIAA Journal, 35, 563–565. Lin, C. H., & Lin, C. A. (1997). Simple high-order bounded convection scheme to model discontinuities. AIAA Journal, 35, 563–565.
15.
Zurück zum Zitat Martin, J. C., & Moyce, W. J. (1952). An experimental study of collapse of liquid columns on a rigid horizontal plane. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 244, 312–324. Martin, J. C., & Moyce, W. J. (1952). An experimental study of collapse of liquid columns on a rigid horizontal plane. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 244, 312–324.
16.
Zurück zum Zitat Mason, M. L., Putnam, L. E., & Re, R. J. (1980). The effect of throat contouring on two-dimensional converging-diverging nozzles at static conditions. NASA Technical Paper, 1704. Mason, M. L., Putnam, L. E., & Re, R. J. (1980). The effect of throat contouring on two-dimensional converging-diverging nozzles at static conditions. NASA Technical Paper, 1704.
17.
Zurück zum Zitat Nandi, K., & Date, A. W. (2009). Formulation of fully implicit method for simulation of flows with interfaces using primitive variables. International Journal of Heat and Mass Transfer, 52, 3217–3224.CrossRef Nandi, K., & Date, A. W. (2009). Formulation of fully implicit method for simulation of flows with interfaces using primitive variables. International Journal of Heat and Mass Transfer, 52, 3217–3224.CrossRef
18.
Zurück zum Zitat Nandi, K., & Date, A. W. (2009). Validation of fully implicit method for simulation of flows with interfaces using primitive variables. International Journal of Heat and Mass Transfer, 52, 3225–3234.CrossRef Nandi, K., & Date, A. W. (2009). Validation of fully implicit method for simulation of flows with interfaces using primitive variables. International Journal of Heat and Mass Transfer, 52, 3225–3234.CrossRef
19.
Zurück zum Zitat Patankar, S. V., & Spalding, D. B. (1971). A calculation procedure for heat mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15, 1787.CrossRef Patankar, S. V., & Spalding, D. B. (1971). A calculation procedure for heat mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15, 1787.CrossRef
20.
Zurück zum Zitat Patankar, S. V. (1981). Numerical fluid flow and heat transfer. NewYork: Hemisphere Publ Co.MATH Patankar, S. V. (1981). Numerical fluid flow and heat transfer. NewYork: Hemisphere Publ Co.MATH
21.
Zurück zum Zitat Perry, R. H., & Chilton, C. H. Chemical engineers handbook (5th ed.). Tokyo: McGraw-Hill Kogakusha. Perry, R. H., & Chilton, C. H. Chemical engineers handbook (5th ed.). Tokyo: McGraw-Hill Kogakusha.
22.
Zurück zum Zitat Pimpalnerkar, S., Kulkarni, M., & Date, A. W. (2005). Solution of transport equations on unstructured meshes with cell-centered collocated variables. Part II: Applications. International Journal of Heat and Mass Transfer, 48, 1128–1136. Pimpalnerkar, S., Kulkarni, M., & Date, A. W. (2005). Solution of transport equations on unstructured meshes with cell-centered collocated variables. Part II: Applications. International Journal of Heat and Mass Transfer, 48, 1128–1136.
23.
Zurück zum Zitat Ray, S., & Date, A. W. (2003). Friction and heat transfer characteristics of flow through square duct with twisted tape insert. International Journal of Heat and Mass Transfer, 46, 889–902. Ray, S., & Date, A. W. (2003). Friction and heat transfer characteristics of flow through square duct with twisted tape insert. International Journal of Heat and Mass Transfer, 46, 889–902.
24.
Zurück zum Zitat Rhie, C. M., & Chow, W. L. (1983). A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA Journal, 21, 1525.CrossRef Rhie, C. M., & Chow, W. L. (1983). A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA Journal, 21, 1525.CrossRef
25.
Zurück zum Zitat Rudman, M. (1997). Volume-tracking methods for interfacial flow calculations. International Journal for Numerical Methods in Fluids, 24, 671–691.MathSciNetCrossRef Rudman, M. (1997). Volume-tracking methods for interfacial flow calculations. International Journal for Numerical Methods in Fluids, 24, 671–691.MathSciNetCrossRef
26.
Zurück zum Zitat Salih, A., & Ghosh Moulic, S. (2006). Simulation of Rayleigh-Taylor instability using level-set method. In 33rd National and 3rd International Conference on Fluid Mechanics and Fluid Power (p. 2006), Paper no 1303. India: IIT Bombay. Salih, A., & Ghosh Moulic, S. (2006). Simulation of Rayleigh-Taylor instability using level-set method. In 33rd National and 3rd International Conference on Fluid Mechanics and Fluid Power (p. 2006), Paper no 1303. India: IIT Bombay.
27.
Zurück zum Zitat Sclichting. (1968). Boundary layer theory (English trans. Kestin J.). McGraw-Hill. Sclichting. (1968). Boundary layer theory (English trans. Kestin J.). McGraw-Hill.
28.
Zurück zum Zitat Shih, T. M., & Ren, A. L. (1984). Primitive variable formulations using non-staggered grid. Numerical Heat Transfer, 7, 413–428. Shih, T. M., & Ren, A. L. (1984). Primitive variable formulations using non-staggered grid. Numerical Heat Transfer, 7, 413–428.
29.
Zurück zum Zitat Shyy, W. (1994). Computational modeling for fluid flow and interfacial transport. Amsterdam: Elsevier. Shyy, W. (1994). Computational modeling for fluid flow and interfacial transport. Amsterdam: Elsevier.
30.
Zurück zum Zitat Soni, B., & Date, A. W. (2011). Prediction of turbulent heat transfer in radially outward flow in twisted-tape inserted tube rotating in orthogonal mode. Computational Thermal Science, 3, 49–61. Soni, B., & Date, A. W. (2011). Prediction of turbulent heat transfer in radially outward flow in twisted-tape inserted tube rotating in orthogonal mode. Computational Thermal Science, 3, 49–61.
31.
Zurück zum Zitat Sussman, M., Smereka, P., & Osher, S. (1994). A level set approach for capturing solutions to incompressible two-phase flow. Journal of Computational Physics,114, 146–159. Sussman, M., Smereka, P., & Osher, S. (1994). A level set approach for capturing solutions to incompressible two-phase flow. Journal of Computational Physics,114, 146–159.
32.
Zurück zum Zitat Sussman, M., Smith, K. M., Hussaini, M. Y., Ohta, M., & Zhi-Wei, R. (2007). A sharp interface method for incompressible two-phase flows. Journal of Computational Physics, 221, 469–505. Sussman, M., Smith, K. M., Hussaini, M. Y., Ohta, M., & Zhi-Wei, R. (2007). A sharp interface method for incompressible two-phase flows. Journal of Computational Physics, 221, 469–505.
33.
Zurück zum Zitat Takahira, H., Horiuchi, T., & Banerjee, S. (2004). An improved three dimensional level set method for gas-liquid two-phase flows. Transaction of the ASME Journal of Fluids Engineering, 126, 578–585.CrossRef Takahira, H., Horiuchi, T., & Banerjee, S. (2004). An improved three dimensional level set method for gas-liquid two-phase flows. Transaction of the ASME Journal of Fluids Engineering, 126, 578–585.CrossRef
34.
Zurück zum Zitat Thiart, G. D. (1990). Improved finite-difference formulation for convective-diffusive problems with SIMPLEN algorithm. Numerical Heat Transfer, Part B, 18, 81–95. Thiart, G. D. (1990). Improved finite-difference formulation for convective-diffusive problems with SIMPLEN algorithm. Numerical Heat Transfer, Part B, 18, 81–95.
35.
Zurück zum Zitat van Leer, B. (1977). Towards the ultimate conservative difference scheme IV, a new approach to numerical convection. Journal of Computational Physics, 23, 276–283.CrossRef van Leer, B. (1977). Towards the ultimate conservative difference scheme IV, a new approach to numerical convection. Journal of Computational Physics, 23, 276–283.CrossRef
36.
Zurück zum Zitat Warsi, Z. U. A. (1993). Fluid dynamics—Theoretical and computational approaches. London: CRC Press.MATH Warsi, Z. U. A. (1993). Fluid dynamics—Theoretical and computational approaches. London: CRC Press.MATH
Metadaten
Titel
Some Observations on Thermodynamic Basis of Pressure Continuum Condition and Consequences of Its Violation in Discretised CFD
verfasst von
A. W. Date
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-2670-1_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.