Skip to main content

2016 | OriginalPaper | Buchkapitel

8. Sorption-Enhanced Methanol-to-Shift for H2 Production: Thermodynamics and Catalyst Selection

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter is divided in two main sections. The first part of the chapter presents a preliminary thermodynamic study to assess the viability of producing hydrogen by the sorption-enhanced methanol-to-shift (SEMTS). In the second section, the suitability of different solid catalysts for the SEWGS and SEMTS is evaluated by conducting the reverse water gas shift and methanol decomposition in temperature-programmed reaction experiments. Some catalysts were further studied in longer-term stability tests under water gas shift conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The reactions do not need to be specified for the calculation of the equilibrium composition using the Gibbs minimisation approach. However, they are helpful to understand the changes in the gas composition as the operating conditions vary.
 
Literatur
1.
Zurück zum Zitat Comas, J., Laborde, M., & Amadeo, N. (2004). Thermodynamic analysis of hydrogen production from ethanol using CaO as a CO2 sorbent. Journal of Power Sources, 138(1–2), 61–67.CrossRef Comas, J., Laborde, M., & Amadeo, N. (2004). Thermodynamic analysis of hydrogen production from ethanol using CaO as a CO2 sorbent. Journal of Power Sources, 138(1–2), 61–67.CrossRef
2.
Zurück zum Zitat Chen, H., Zhang, T., Dou, B., Dupont, V., Williams, P., Ghadiri, M., & Ding, Y. (2009). Thermodynamic analyses of adsorption-enhanced steam reforming of glycerol for hydrogen production. International Journal of Hydrogen Energy, 34(17), 7208–7222.CrossRef Chen, H., Zhang, T., Dou, B., Dupont, V., Williams, P., Ghadiri, M., & Ding, Y. (2009). Thermodynamic analyses of adsorption-enhanced steam reforming of glycerol for hydrogen production. International Journal of Hydrogen Energy, 34(17), 7208–7222.CrossRef
3.
Zurück zum Zitat Nielsen, P. E. H., Hansen, J. B., & Schiødt, N. C. (2009). Process for the preparation of a hydrogen-rich stream. US 7,527,781 B2, 2009. Nielsen, P. E. H., Hansen, J. B., & Schiødt, N. C. (2009). Process for the preparation of a hydrogen-rich stream. US 7,527,781 B2, 2009.
4.
Zurück zum Zitat Smith, J. M., Van Ness, H. C., & Abbott, M. M. (2001). Introduction to chemical engineering thermodynamics. London, UK: McGraw-Hill. Smith, J. M., Van Ness, H. C., & Abbott, M. M. (2001). Introduction to chemical engineering thermodynamics. London, UK: McGraw-Hill.
5.
Zurück zum Zitat Ding, Y., & Alpay, E. (2000). Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chemical Engineering Science, 55(17), 3461–3474.CrossRef Ding, Y., & Alpay, E. (2000). Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chemical Engineering Science, 55(17), 3461–3474.CrossRef
6.
Zurück zum Zitat Lwin, Y., Daud, W. R. W., Mohamad, A. B., & Yaakob, Z. (2000). Hydrogen production from steam–methanol reforming: thermodynamic analysis. International Journal of Hydrogen Energy, 25(1), 47–53.CrossRef Lwin, Y., Daud, W. R. W., Mohamad, A. B., & Yaakob, Z. (2000). Hydrogen production from steam–methanol reforming: thermodynamic analysis. International Journal of Hydrogen Energy, 25(1), 47–53.CrossRef
7.
Zurück zum Zitat Choi, Y., & Stenger, H. (2002). Kinetics of methanol decomposition and water gas shift reaction on a commercial Cu-ZnO/Al2O3 catalyst. Fuel Chemistry Division Preprints, 47, 723–724. Choi, Y., & Stenger, H. (2002). Kinetics of methanol decomposition and water gas shift reaction on a commercial Cu-ZnO/Al2O3 catalyst. Fuel Chemistry Division Preprints, 47, 723–724.
8.
Zurück zum Zitat Brown, J. C., & Gulari, E. (2004). Hydrogen production from methanol decomposition over Pt/Al2O3 and ceria promoted Pt/Al2O3 catalysts. Catalysis Communications, 5(8), 431–436.CrossRef Brown, J. C., & Gulari, E. (2004). Hydrogen production from methanol decomposition over Pt/Al2O3 and ceria promoted Pt/Al2O3 catalysts. Catalysis Communications, 5(8), 431–436.CrossRef
9.
Zurück zum Zitat Hinrichsen, K.-O., Kochloefl, K., & Muhler, M. (2008). Water gas shift and COS removal. In Handbook of heterogeneous catalysis. Germany: Wiley-VCH Verlag GmbH & Co. KGaA. Hinrichsen, K.-O., Kochloefl, K., & Muhler, M. (2008). Water gas shift and COS removal. In Handbook of heterogeneous catalysis. Germany: Wiley-VCH Verlag GmbH & Co. KGaA.
10.
Zurück zum Zitat van Dijk, H. A. J., Walspurger, S., Cobden, P. D., Jansen, D., van den Brink, R. W., & de Vos, F. G. (2009). Performance of water-gas shift catalysts under sorption-enhanced water-gas shift conditions. Energy Procedia, 1(1), 639–646.CrossRef van Dijk, H. A. J., Walspurger, S., Cobden, P. D., Jansen, D., van den Brink, R. W., & de Vos, F. G. (2009). Performance of water-gas shift catalysts under sorption-enhanced water-gas shift conditions. Energy Procedia, 1(1), 639–646.CrossRef
11.
Zurück zum Zitat Sá, S., Silva, H., Brandão, L., Sousa, J. M., & Mendes, A. (2010). Catalysts for methanol steam reforming—a review. Applied Catalysis, B: Environmental, 99(1–2), 43–57.CrossRef Sá, S., Silva, H., Brandão, L., Sousa, J. M., & Mendes, A. (2010). Catalysts for methanol steam reforming—a review. Applied Catalysis, B: Environmental, 99(1–2), 43–57.CrossRef
12.
Zurück zum Zitat Yeung, C. M. Y., & Tsang, S. C. (2009). Noble metal core—ceria shell catalysts for water—gas shift reaction. The Journal of Physical Chemistry C, 113(15), 6074–6087.CrossRef Yeung, C. M. Y., & Tsang, S. C. (2009). Noble metal core—ceria shell catalysts for water—gas shift reaction. The Journal of Physical Chemistry C, 113(15), 6074–6087.CrossRef
13.
Zurück zum Zitat Hansen, J. B., & Højlund Nielsen, P. E. (2008). Methanol synthesis. In Handbook of heterogeneous catalysis. Wiley-VCH Verlag GmbH & Co. KGaA. Hansen, J. B., & Højlund Nielsen, P. E. (2008). Methanol synthesis. In Handbook of heterogeneous catalysis. Wiley-VCH Verlag GmbH & Co. KGaA.
14.
Zurück zum Zitat Huffman, J. R., & Dodge, B. F. (1929). Decomposition of methanol over catalysts composed of oxides of zinc and chromium. Industrial and Engineering Chemistry, 21(11), 1056–1061.CrossRef Huffman, J. R., & Dodge, B. F. (1929). Decomposition of methanol over catalysts composed of oxides of zinc and chromium. Industrial and Engineering Chemistry, 21(11), 1056–1061.CrossRef
15.
Zurück zum Zitat Twigg, M., & Spencer, M. (2003). Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis. Topics in Catalysis, 22(3–4), 191–203.CrossRef Twigg, M., & Spencer, M. (2003). Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis. Topics in Catalysis, 22(3–4), 191–203.CrossRef
16.
Zurück zum Zitat Spencer, M. S. (1987). α-Brass formation in copper/zinc oxide catalysts: II. Diffusion of zinc in copper and α-brass under reaction conditions. Surface Science, 192(2–3), 329–335.CrossRef Spencer, M. S. (1987). α-Brass formation in copper/zinc oxide catalysts: II. Diffusion of zinc in copper and α-brass under reaction conditions. Surface Science, 192(2–3), 329–335.CrossRef
17.
Zurück zum Zitat Nakamura, J., Nakamura, I., Uchijima, T., Watanabe, T., & Fujitani, T. (1996). Model studies of methanol synthesis on copper catalysts. In W. Joe, W. N. D. E. I. Hightower & T. B. Alexis (Eds.), Studies in surface science and catalysis (Vol. 101, pp. 1389–1399). Amsterdam: Elsevier. Nakamura, J., Nakamura, I., Uchijima, T., Watanabe, T., & Fujitani, T. (1996). Model studies of methanol synthesis on copper catalysts. In W. Joe, W. N. D. E. I. Hightower & T. B. Alexis (Eds.), Studies in surface science and catalysis (Vol. 101, pp. 1389–1399). Amsterdam: Elsevier.
18.
Zurück zum Zitat Rakov, E. G. (2006). Nanotubes and nanofibers. FL, USA: Taylor and Francis Group. Rakov, E. G. (2006). Nanotubes and nanofibers. FL, USA: Taylor and Francis Group.
19.
Zurück zum Zitat Yeung, C., & Tsang, S. (2009). Microemulsion prepared pt in ceria: Catalytically active for water gas shift reaction but totally inert for methanation. Catalysis Letters, 128(3–4), 349–355.CrossRef Yeung, C., & Tsang, S. (2009). Microemulsion prepared pt in ceria: Catalytically active for water gas shift reaction but totally inert for methanation. Catalysis Letters, 128(3–4), 349–355.CrossRef
Metadaten
Titel
Sorption-Enhanced Methanol-to-Shift for H2 Production: Thermodynamics and Catalyst Selection
verfasst von
Diana Iruretagoyena Ferrer
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-41276-4_8