Skip to main content

2017 | OriginalPaper | Buchkapitel

Sparse Representation of the Transients in Mechanical Signals

verfasst von : Zhongkui Zhu, Wei Fan, Gaigai Cai, Weiguo Huang, Juanjuan Shi

Erschienen in: Structural Health Monitoring

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter focuses on the sparse representation of the transients in mechanical signals. Sparse representation means that the signal can be represented by an optimal linear combination of atoms by a specialized over-complete dictionary, leading to the sparsity of representation coefficients. Signal sparse representation consists of two main aspects, i.e., dictionary construction and optimization solution. This chapter also presents the applications of sparse representation, mainly in mechanical fault feature detection, such as fault detection of rolling bearings, gearboxes and compound bearing faults.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bruckstein A.M., Donoho D.L., Elad M., “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Review, 2009, 51(1): 34–81. Bruckstein A.M., Donoho D.L., Elad M., “From sparse solutions of systems of equations to sparse modeling of signals and images,” SIAM Review, 2009, 51(1): 34–81.
2.
Zurück zum Zitat Yang J., Wright J., Huang T.S., et al., “Image super-resolution via sparse representation,” IEEE Transactions on Image Processing, 2010, 19(11): 2861–2873. Yang J., Wright J., Huang T.S., et al., “Image super-resolution via sparse representation,” IEEE Transactions on Image Processing, 2010, 19(11): 2861–2873.
3.
Zurück zum Zitat Wright J., Ma Y., Mairal J., et al., “Sparse representation for computer vision and pattern recognition,” Proceedings of the IEEE, 2010, 98(6): 1031–1044. Wright J., Ma Y., Mairal J., et al., “Sparse representation for computer vision and pattern recognition,” Proceedings of the IEEE, 2010, 98(6): 1031–1044.
4.
Zurück zum Zitat Liu H., Liu C., Huang Y., “Adaptive feature extraction using sparse coding for machinery fault diagnosis,” Mechanical Systems and Signal Processing, 2011, 25(2): 558–574. Liu H., Liu C., Huang Y., “Adaptive feature extraction using sparse coding for machinery fault diagnosis,” Mechanical Systems and Signal Processing, 2011, 25(2): 558–574.
5.
Zurück zum Zitat Peng F., Yu D., Luo J., “Sparse signal decomposition method based on multi-scale Chirplet and its application to the fault diagnosis of gearboxes,” Mechanical Systems and Signal Processing, 2011, 25(2): 549–557. Peng F., Yu D., Luo J., “Sparse signal decomposition method based on multi-scale Chirplet and its application to the fault diagnosis of gearboxes,” Mechanical Systems and Signal Processing, 2011, 25(2): 549–557.
6.
Zurück zum Zitat Yang H., Mathew J., Ma L., “Fault diagnosis of rolling element bearings using basis pursuit,” Mechanical Systems and Signal Processing, 2005, 19(2): 341–356. Yang H., Mathew J., Ma L., “Fault diagnosis of rolling element bearings using basis pursuit,” Mechanical Systems and Signal Processing, 2005, 19(2): 341–356.
7.
Zurück zum Zitat Elad M., Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, Springer, Israel, 2010. Elad M., Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, Springer, Israel, 2010.
8.
Zurück zum Zitat Rubinstein R., Bruckstein A.M., Elad M., “Dictionaries for sparse representation modeling,” Proceedings of the IEEE, 2010, 98(6): 1045–1057. Rubinstein R., Bruckstein A.M., Elad M., “Dictionaries for sparse representation modeling,” Proceedings of the IEEE, 2010, 98(6): 1045–1057.
9.
Zurück zum Zitat Aviyente S., “Compressed sensing framework for EEG compression,” IEEE/SP 14th Workshop on Statistical Signal Processing, 2007: 181–184. Aviyente S., “Compressed sensing framework for EEG compression,” IEEE/SP 14th Workshop on Statistical Signal Processing, 2007: 181–184.
10.
Zurück zum Zitat Ghoraani B., Krishnan S., “Time–frequency matrix feature extraction and classification of environmental audio signals,” IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(7): 2197–2209. Ghoraani B., Krishnan S., “Time–frequency matrix feature extraction and classification of environmental audio signals,” IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(7): 2197–2209.
11.
Zurück zum Zitat Yeste-Ojeda O.A., Grajal J., López-Risue G., “Atomic decomposition for radar applications,” IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 187–200. Yeste-Ojeda O.A., Grajal J., López-Risue G., “Atomic decomposition for radar applications,” IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 187–200.
12.
Zurück zum Zitat Zou H., Dai Q., Wang R., et al., “Parametric TFR via windowed exponential frequency modulated atoms,” IEEE Signal Processing Letters, 2001, 8(5): 140–142. Zou H., Dai Q., Wang R., et al., “Parametric TFR via windowed exponential frequency modulated atoms,” IEEE Signal Processing Letters, 2001, 8(5): 140–142.
13.
Zurück zum Zitat Li X., Zhao K., Liu D., et al., “Feature extraction and identification of underground nuclear explosion and natural earthquake based on FMmlet transform and BP neural network,” Advances in Neural Networks-ISNN 2004. Springer Berlin Heidelberg, 2004: 925–930. Li X., Zhao K., Liu D., et al., “Feature extraction and identification of underground nuclear explosion and natural earthquake based on FMmlet transform and BP neural network,” Advances in Neural Networks-ISNN 2004. Springer Berlin Heidelberg, 2004: 925–930.
14.
Zurück zum Zitat Meng Q.J., Sun N., “A comparison study on Gabor, Chirplet, FMm let atom databases for ECG signal processing,” 3rd IEEE International Conference on Bioinformatics and Biomedical Engineering, 2009: 1–3. Meng Q.J., Sun N., “A comparison study on Gabor, Chirplet, FMm let atom databases for ECG signal processing,” 3rd IEEE International Conference on Bioinformatics and Biomedical Engineering, 2009: 1–3.
15.
Zurück zum Zitat Mallat S.G., Zhang Z., “Matching pursuits with time-frequency dictionaries,” IEEE Transactions on Signal Processing, 1993, 41(12): 3397–3415. Mallat S.G., Zhang Z., “Matching pursuits with time-frequency dictionaries,” IEEE Transactions on Signal Processing, 1993, 41(12): 3397–3415.
16.
Zurück zum Zitat Donoho D.L., Tsaig Y., Drori I., et al., “Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit,” IEEE Transactions on Information Theory, 2012, 58(2): 1094–1121. Donoho D.L., Tsaig Y., Drori I., et al., “Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit,” IEEE Transactions on Information Theory, 2012, 58(2): 1094–1121.
17.
Zurück zum Zitat Needell, D., Vershynin, R.: “Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit,” Found. Comput. Math., 2009, 9(3):317–334. Needell, D., Vershynin, R.: “Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit,” Found. Comput. Math., 2009, 9(3):317–334.
18.
Zurück zum Zitat Chen, S.S., Donoho, D.L., Saunders, M.A., “Atomic decomposition by basis pursuit,” SIAM J. Sci. Comput., 1998, 20(1), 33–61. Chen, S.S., Donoho, D.L., Saunders, M.A., “Atomic decomposition by basis pursuit,” SIAM J. Sci. Comput., 1998, 20(1), 33–61.
19.
Zurück zum Zitat Donoho D.L., Huo X., “Uncertainty principles and ideal atomic decomposition,” IEEE Transactions on Information Theory, 2001, 47(7): 2845–2862. Donoho D.L., Huo X., “Uncertainty principles and ideal atomic decomposition,” IEEE Transactions on Information Theory, 2001, 47(7): 2845–2862.
20.
Zurück zum Zitat Feng K., Jiang Z., He W., et al., “Rolling element bearing fault detection based on optimal antisymmetric real Laplace wavelet,” Measurement, 2011, 44(9): 1582–1591. Feng K., Jiang Z., He W., et al., “Rolling element bearing fault detection based on optimal antisymmetric real Laplace wavelet,” Measurement, 2011, 44(9): 1582–1591.
21.
Zurück zum Zitat Zheng H., Li Z., Chen X., “Gear fault diagnosis based on continuous wavelet transform,” Mechanical Systems and Signal Processing, 2002, 16(2): 447–457. Zheng H., Li Z., Chen X., “Gear fault diagnosis based on continuous wavelet transform,” Mechanical Systems and Signal Processing, 2002, 16(2): 447–457.
22.
Zurück zum Zitat Droitcour A., Boric-Lubecke O., Lubecke V., et al., “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Transactions on Microwave Theory and Techniques, 2004, 52(3):838–848, Droitcour A., Boric-Lubecke O., Lubecke V., et al., “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Transactions on Microwave Theory and Techniques, 2004, 52(3):838–848,
23.
Zurück zum Zitat Strang G., Nguyen T., Wavelets and Filter Banks, SIAM, 1996. Strang G., Nguyen T., Wavelets and Filter Banks, SIAM, 1996.
24.
Zurück zum Zitat Daubechies I., Defrise M., De Mol C., “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Commun Pur Appl Math, 2003, 57: 1413–1457. Daubechies I., Defrise M., De Mol C., “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Commun Pur Appl Math, 2003, 57: 1413–1457.
25.
Zurück zum Zitat Beck A., Teboulle M., “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM Journal on Imaging Sciences, 2009, 2(1): 183–202. Beck A., Teboulle M., “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM Journal on Imaging Sciences, 2009, 2(1): 183–202.
26.
Zurück zum Zitat Afonso M.V., Bioucas-Dias J.M., Figureueiredo M.A.T., “Fast image recovery using variable splitting and constrained optimization,” IEEE Transactions on Image Processing, 2010, 19(9): 2345–2356. Afonso M.V., Bioucas-Dias J.M., Figureueiredo M.A.T., “Fast image recovery using variable splitting and constrained optimization,” IEEE Transactions on Image Processing, 2010, 19(9): 2345–2356.
27.
Zurück zum Zitat Hunter D.R., Lange K., “A tutorial on MM algorithms,” The American Statistician, 2004, 58(1): 30–37. Hunter D.R., Lange K., “A tutorial on MM algorithms,” The American Statistician, 2004, 58(1): 30–37.
Metadaten
Titel
Sparse Representation of the Transients in Mechanical Signals
verfasst von
Zhongkui Zhu
Wei Fan
Gaigai Cai
Weiguo Huang
Juanjuan Shi
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-56126-4_9

Neuer Inhalt