Skip to main content

2017 | OriginalPaper | Buchkapitel

Compressive Sensing: A New Insight to Condition Monitoring of Rotary Machinery

verfasst von : Gang Tang, Huaqing Wang, Yanliang Ke, Ganggang Luo

Erschienen in: Structural Health Monitoring

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the development of rotary machinery condition monitoring, challenges have often been encountered due to the cumbersome nature of data monitoring. Common methods in signal processing are primarily based on the Shannon sampling principle, which requires substantial amounts of data to achieve the desired accuracy from on-line monitoring signals. This limits their applications in cases for which only small samples can be collected, or cases for which too much data are generating which needs to be largely reduced with under-sampling. Using the Shannon sampling principle, it seems impossible to significantly reduce the quantity of data while preserving adequate useful information for condition monitoring. A newly developed theory termed compressive sensing provides a new insight to condition monitoring and fault diagnosis. It states that a signal can be perfectly recovered from under-sampled data, which means that useful condition information can still be represented by small samples. This study presents novel methods for rotary machinery fault detection from compressed vibration signals inspired by compressive sensing, which can largely reduce the data collection and detect faults of rotary machinery from only a few signal samples. This will greatly help reduce the amount of monitoring data while still guaranteeing a high accuracy of fault detection. Case studies related to roller bearing fault signals are also presented in this study to illustrate the effectiveness of the present strategy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat McFadden P.D., Smith J.D., “Vibration monitoring of rolling element bearings by the high-frequency resonance technique - a review,” Tribology international, 1984, 17(1):3–10. McFadden P.D., Smith J.D., “Vibration monitoring of rolling element bearings by the high-frequency resonance technique - a review,” Tribology international, 1984, 17(1):3–10.
2.
Zurück zum Zitat Tandon N., Choudhury A., “Review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings”, Tribology International, 1999, 32(8):469–480. Tandon N., Choudhury A., “Review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings”, Tribology International, 1999, 32(8):469–480.
3.
Zurück zum Zitat Heng R.B., Nor, M.J., “Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition”, Applied Acoustics, 1998, 53(1):211–226. Heng R.B., Nor, M.J., “Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition”, Applied Acoustics, 1998, 53(1):211–226.
4.
Zurück zum Zitat Junsheng C., Dejie Y., Yu Y., “The application of energy operator demodulation approach based on EMD in machinery fault diagnosis”, Mechanical Systems and Signal Processing, 2007, 21(2):668–677. Junsheng C., Dejie Y., Yu Y., “The application of energy operator demodulation approach based on EMD in machinery fault diagnosis”, Mechanical Systems and Signal Processing, 2007, 21(2):668–677.
5.
Zurück zum Zitat Ming A.B., Qin Z.Y., Zhang W., Chu, F.L., “Spectrum auto-correlation analysis and its application to fault diagnosis of rolling element bearings”, Mechanical Systems and Signal Processing, 2013, 41(1):141–154. Ming A.B., Qin Z.Y., Zhang W., Chu, F.L., “Spectrum auto-correlation analysis and its application to fault diagnosis of rolling element bearings”, Mechanical Systems and Signal Processing, 2013, 41(1):141–154.
6.
Zurück zum Zitat Yu D., Cheng J., Yang Y., “Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings”, Mechanical Systems and Signal Processing, 2005, 19(2):259–270. Yu D., Cheng J., Yang Y., “Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings”, Mechanical Systems and Signal Processing, 2005, 19(2):259–270.
7.
Zurück zum Zitat Rai V.K., Mohanty A.R., “Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert–Huang transform”, Mechanical Systems and Signal Processing, 2007, 21(6):2607–2615. Rai V.K., Mohanty A.R., “Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert–Huang transform”, Mechanical Systems and Signal Processing, 2007, 21(6):2607–2615.
8.
Zurück zum Zitat Lei Y., Li N., Lin J., Wang S., “Fault diagnosis of rotating machinery based on an adaptive ensemble empirical mode decomposition”, Sensors 2013, 13(12):16950–16964. Lei Y., Li N., Lin J., Wang S., “Fault diagnosis of rotating machinery based on an adaptive ensemble empirical mode decomposition”, Sensors 2013, 13(12):16950–16964.
9.
Zurück zum Zitat Yan R., Gao R.X., Chen X., “Wavelets for fault diagnosis of rotary machines: a review with applications”, Signal Processing, 2014, 96(A):1–15. Yan R., Gao R.X., Chen X., “Wavelets for fault diagnosis of rotary machines: a review with applications”, Signal Processing, 2014, 96(A):1–15.
10.
Zurück zum Zitat Wang H.Q., Hou W., Tang G., Yuan H.F., “Fault detection enhancement in rolling element bearings via peak-based multi-scale decomposition and envelope demodulation”, Mathematical Problems in Engineering, 2014, Article ID 329458. Wang H.Q., Hou W., Tang G., Yuan H.F., “Fault detection enhancement in rolling element bearings via peak-based multi-scale decomposition and envelope demodulation”, Mathematical Problems in Engineering, 2014, Article ID 329458.
11.
Zurück zum Zitat Han J., Kamber M., Pei J., Data Mining Concepts and Techniques, Beijing: Higher Education Pess & Morgan Kaufmann Publishers, 2002. Han J., Kamber M., Pei J., Data Mining Concepts and Techniques, Beijing: Higher Education Pess & Morgan Kaufmann Publishers, 2002.
12.
Zurück zum Zitat Jerri A.J., “The Shannon sampling theorem – its various extensions and applications: a tutorial review,” Proceedings of the IEEE, 1977, 65(11):1565–1596. Jerri A.J., “The Shannon sampling theorem – its various extensions and applications: a tutorial review,” Proceedings of the IEEE, 1977, 65(11):1565–1596.
13.
Zurück zum Zitat Candè E.J., Wakin M.B., “An introduction to compressive sampling,” IEEE Signal Processing Magazine, 2008, 25(2):21–30. Candè E.J., Wakin M.B., “An introduction to compressive sampling,” IEEE Signal Processing Magazine, 2008, 25(2):21–30.
14.
Zurück zum Zitat Baraniuk R.G., “Compressive sensing,” IEEE Signal Processing Magazine, 2007, 24(4):118–121. Baraniuk R.G., “Compressive sensing,” IEEE Signal Processing Magazine, 2007, 24(4):118–121.
15.
Zurück zum Zitat Lustig M., Donoho D.L, Santos J.M., et.al, “ Compressed sensing MRI,” IEEE Signal Processing Magazine, 2008, 25(2): 72–82. Lustig M., Donoho D.L, Santos J.M., et.al, “ Compressed sensing MRI,” IEEE Signal Processing Magazine, 2008, 25(2): 72–82.
16.
Zurück zum Zitat Tang G., Seismic Data Reconstruction and Denoising based on Compressive Sensing and Sparse Representation, Tsinghua University, Beijing, China, 2010. Tang G., Seismic Data Reconstruction and Denoising based on Compressive Sensing and Sparse Representation, Tsinghua University, Beijing, China, 2010.
17.
Zurück zum Zitat Davenport M.A., Wakin M.B., Baraniuk R.G., “Detection and estimation with compressive measurements,” Tech. Rep, Houston: Rice ECE Department, 2006, pp. 3–13. Davenport M.A., Wakin M.B., Baraniuk R.G., “Detection and estimation with compressive measurements,” Tech. Rep, Houston: Rice ECE Department, 2006, pp. 3–13.
18.
Zurück zum Zitat Haupt J., Nowak R., “Compressed sampling for signal detection,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Honolulu, Hawaii, April 2007, pp. 1509–1512. Haupt J., Nowak R., “Compressed sampling for signal detection,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Honolulu, Hawaii, April 2007, pp. 1509–1512.
19.
Zurück zum Zitat Duarte M.F., Davenport M.A., Wakin M.B., et.al, “Sparse signal detection from incoherent projections,” Acoustics, Speech and Signal Processing, ICASSP 2006 Proceedings. 2006 IEEE International Conference on. IEEE, 3: III-III. Duarte M.F., Davenport M.A., Wakin M.B., et.al, “Sparse signal detection from incoherent projections,” Acoustics, Speech and Signal Processing, ICASSP 2006 Proceedings. 2006 IEEE International Conference on. IEEE, 3: III-III.
20.
Zurück zum Zitat Meng J., Li H., Han Z., “Sparse event detection in wireless sensor networks using compressive sensing”, 43rd Annual Conference on IEEE Information Sciences and Systems (CISS 2009), 181–185. Meng J., Li H., Han Z., “Sparse event detection in wireless sensor networks using compressive sensing”, 43rd Annual Conference on IEEE Information Sciences and Systems (CISS 2009), 181–185.
21.
Zurück zum Zitat Bao Y., Beck J.L., Li H., “Compressive sampling for accelerometer signals in structural health monitoring”, Structural Health Monitoring, 2011, 10(3):235–246. Bao Y., Beck J.L., Li H., “Compressive sampling for accelerometer signals in structural health monitoring”, Structural Health Monitoring, 2011, 10(3):235–246.
22.
Zurück zum Zitat Chen X.F., Du Z.H., Li J.M., Li X., “Compressed sensing based on dictionary learning for extracting impulse components”, Signal Processing, 2014, 96:94–109. Chen X.F., Du Z.H., Li J.M., Li X., “Compressed sensing based on dictionary learning for extracting impulse components”, Signal Processing, 2014, 96:94–109.
23.
Zurück zum Zitat Chen X.F., Du Z.H., Li J.M., Li X., “Compressed sensing based on dictionary learning for extracting impulse components”, Signal Processing, 2014, 96:94–109. Chen X.F., Du Z.H., Li J.M., Li X., “Compressed sensing based on dictionary learning for extracting impulse components”, Signal Processing, 2014, 96:94–109.
24.
Zurück zum Zitat Zhang X.P., Hu N.Q., Cheng Z.A, “Bearing fault detection method base on compressed sensing”. In Engineering Asset Management-Systems, Professional Practices and Certification; Springer International Publishing: New York, NY, USA, 2015; pp. 789–798. Zhang X.P., Hu N.Q., Cheng Z.A, “Bearing fault detection method base on compressed sensing”. In Engineering Asset Management-Systems, Professional Practices and Certification; Springer International Publishing: New York, NY, USA, 2015; pp. 789–798.
25.
Zurück zum Zitat Tang G., Yang Q., Wang H.Q., Luo G.G., Ma J.W., “Sparse classification of rotating machinery faults based on compressive sensing strategy”, Mechatronics, 2015, 31:60–67. Tang G., Yang Q., Wang H.Q., Luo G.G., Ma J.W., “Sparse classification of rotating machinery faults based on compressive sensing strategy”, Mechatronics, 2015, 31:60–67.
26.
Zurück zum Zitat Tang G., Hou W., Wang H., Luo G.G., Ma J.W., “Compressive sensing of roller bearing faults via harmonic detection from under-sampled vibration signals,” Sensors 2015, 15(10):25648–25662. Tang G., Hou W., Wang H., Luo G.G., Ma J.W., “Compressive sensing of roller bearing faults via harmonic detection from under-sampled vibration signals,” Sensors 2015, 15(10):25648–25662.
27.
Zurück zum Zitat Tang G., Luo G.G., Ke Y.L., Yang Q., Wang, H.Q., “Compressive sensing: a new insight to signal processing for condition monitoring and fault diagnosis”, 28th International Congress of Condition Monitoring and Diagnostic Engineering, 2015, Buenos Aires, Argentina. Tang G., Luo G.G., Ke Y.L., Yang Q., Wang, H.Q., “Compressive sensing: a new insight to signal processing for condition monitoring and fault diagnosis”, 28th International Congress of Condition Monitoring and Diagnostic Engineering, 2015, Buenos Aires, Argentina.
28.
Zurück zum Zitat Davenport M.A., Wakin M.B., Baraniuk R.G., “Detection and estimation with compressive measurements”, Dept. of ECE, Rice University, Tech. Rep., 2006. Davenport M.A., Wakin M.B., Baraniuk R.G., “Detection and estimation with compressive measurements”, Dept. of ECE, Rice University, Tech. Rep., 2006.
29.
Zurück zum Zitat Haupt J., Nowak R., “Compressed sampling for signal detection”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Honolulu, Hawaii, 2007, 1509–1512. Haupt J., Nowak R., “Compressed sampling for signal detection”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Honolulu, Hawaii, 2007, 1509–1512.
30.
Zurück zum Zitat Duarte M.F., Davenport M., Wakin M.B., Baraniuk R.G., “Sparse signal detection from incoherent projections”, In Acoustics, Speech and Signal Processing. ICASSP 2006 Proceedings, Vol. 3, pp. III-III. Duarte M.F., Davenport M., Wakin M.B., Baraniuk R.G., “Sparse signal detection from incoherent projections”, In Acoustics, Speech and Signal Processing. ICASSP 2006 Proceedings, Vol. 3, pp. III-III.
31.
Zurück zum Zitat Shannon C.E., “Communication in the presence of noise”, Proceedings of the IRE, 1949, 10–21. Shannon C.E., “Communication in the presence of noise”, Proceedings of the IRE, 1949, 10–21.
32.
Zurück zum Zitat Mallat S.G., A Wavelet Tour of Signal Processing: The Sparse Way, Academic Press, 2008. Mallat S.G., A Wavelet Tour of Signal Processing: The Sparse Way, Academic Press, 2008.
33.
Zurück zum Zitat Donoho D.L., “Compressed sensing”, IEEE Transactions on Information Theory, 2006, 1289–1306. Donoho D.L., “Compressed sensing”, IEEE Transactions on Information Theory, 2006, 1289–1306.
34.
Zurück zum Zitat Mallat S.G., Zhang Z., “Matching pursuits with time-frequency dictionaries”, IEEE Transactions on Signal Processing, 1993, 3397–3415. Mallat S.G., Zhang Z., “Matching pursuits with time-frequency dictionaries”, IEEE Transactions on Signal Processing, 1993, 3397–3415.
35.
Zurück zum Zitat Pati Y.C., Rezaiifar R., Krishnaprasad P.S., “Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition”, Signals, Systems and Computers, 1993 Conference Record of the Twenty-Seventh Asilomar Conference, 1993. Pati Y.C., Rezaiifar R., Krishnaprasad P.S., “Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition”, Signals, Systems and Computers, 1993 Conference Record of the Twenty-Seventh Asilomar Conference, 1993.
36.
Zurück zum Zitat Chen S.S., Donoho D.L., “Atomic decomposition by basis pursuit”, SIAM Review, 2001, 129–159. Chen S.S., Donoho D.L., “Atomic decomposition by basis pursuit”, SIAM Review, 2001, 129–159.
37.
Zurück zum Zitat Gorodnitsky I.F., Rao B.D., “Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm,” IEEE Transactions on Signal Processing, 1997, 600–616. Gorodnitsky I.F., Rao B.D., “Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm,” IEEE Transactions on Signal Processing, 1997, 600–616.
Metadaten
Titel
Compressive Sensing: A New Insight to Condition Monitoring of Rotary Machinery
verfasst von
Gang Tang
Huaqing Wang
Yanliang Ke
Ganggang Luo
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-56126-4_8

Neuer Inhalt