Skip to main content

2017 | OriginalPaper | Buchkapitel

Matching Demodulation Transform and Its Application in Machine Fault Diagnosis

verfasst von : Xuefeng Chen, Shibin Wang

Erschienen in: Structural Health Monitoring

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, matching demodulation transform (MDT), an iterative algorithm, is introduced to generate a time-frequency (TF) representation with satisfactory energy concentration, and thus to extract the highly oscillatory frequency-modulation (FM) feature of rotating machine fault. As opposed to conventional time-frequency analysis (TFA) methods, this algorithm does not have to devise ad hoc parametric TF dictionary. Assuming the FM law of a signal can be well characterized by a determined mathematical model with reasonable accuracy, the MDT algorithm can adopt a partial demodulation and stepwise refinement strategy for investigating TF properties of the signal. The practical implementation of the MDT involves an iterative procedure that gradually matches the true instantaneous frequency (IF) of the signal. Moreover, because the MDT is a linear TFA method, it can reconstruct individual components from a multicomponent signal’s TF representation. Theoretical analysis of the MDT’s performance is provided, including quantitative analysis of the IF estimation error and the convergence condition. The validity and practical utility of the MDT is then demonstrated on simulation study, an experiment rotor system and a practical heavy oil catalytic cracking machine set with rotor rub-impact fault. The analysis results show that the MDT method is powerful in the analysis of FM signals and is an effective tool for the feature extraction of machine faults.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yan R., Gao R.X., “Energy-based feature extraction for defect diagnosis in rotary machines,” IEEE Transactions on Instrumentation and Measurement, 2009, 58 (9): 3130–3139. Yan R., Gao R.X., “Energy-based feature extraction for defect diagnosis in rotary machines,” IEEE Transactions on Instrumentation and Measurement, 2009, 58 (9): 3130–3139.
2.
Zurück zum Zitat Randall R.B., Antoni J., “Rolling element bearing diagnostics-A tutorial,” Mechanical Systems and Signal Processing, 2011, 25 (2): 485–520. Randall R.B., Antoni J., “Rolling element bearing diagnostics-A tutorial,” Mechanical Systems and Signal Processing, 2011, 25 (2): 485–520.
3.
Zurück zum Zitat Huang N.E., Shen. Z., Long S.R., et al. “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454 (1971): 903–995. Huang N.E., Shen. Z., Long S.R., et al. “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454 (1971): 903–995.
4.
Zurück zum Zitat Yan R., Gao R.X., “Hilbert–Huang transform-based vibration signal analysis for machine health monitoring,” IEEE Transactions on Instrumentation and Measurement, 2006, 55 (6): 2320–2329. Yan R., Gao R.X., “Hilbert–Huang transform-based vibration signal analysis for machine health monitoring,” IEEE Transactions on Instrumentation and Measurement, 2006, 55 (6): 2320–2329.
5.
Zurück zum Zitat Wang Y.X., He Z.J., Zi Y.Y., “A demodulation method based on improved local mean decomposition and its application in rub-impact fault diagnosis,” Measurement Science and Technology, 2009, 20 (2): 025704 (025710 pp). Wang Y.X., He Z.J., Zi Y.Y., “A demodulation method based on improved local mean decomposition and its application in rub-impact fault diagnosis,” Measurement Science and Technology, 2009, 20 (2): 025704 (025710 pp).
6.
Zurück zum Zitat Lei Y., Lin J., He Z., et al. “A review on empirical mode decomposition in fault diagnosis of rotating machinery,” Mechanical Systems and Signal Processing, 2013, 35 (1–2): 108–126. Lei Y., Lin J., He Z., et al. “A review on empirical mode decomposition in fault diagnosis of rotating machinery,” Mechanical Systems and Signal Processing, 2013, 35 (1–2): 108–126.
7.
Zurück zum Zitat Yan R., Gao R.X., Chen X., “Wavelets for fault diagnosis of rotary machines: A review with applications,” Signal Processing, 2014, 96: 1–15. Yan R., Gao R.X., Chen X., “Wavelets for fault diagnosis of rotary machines: A review with applications,” Signal Processing, 2014, 96: 1–15.
8.
Zurück zum Zitat Wang S., Huang W., Zhu Z.K., “Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis,” Mechanical Systems and Signal Processing, 2011, 25 (4): 1299–1320. Wang S., Huang W., Zhu Z.K., “Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis,” Mechanical Systems and Signal Processing, 2011, 25 (4): 1299–1320.
9.
Zurück zum Zitat Chen X., Li X., Wang S., et al., “Composite damage detection based on redundant second-generation wavelet transform and fractal dimension tomography algorithm of Lamb wave,” IEEE Transactions on Instrumentation and Measurement, 2013, 62 (5): 1354–1363. Chen X., Li X., Wang S., et al., “Composite damage detection based on redundant second-generation wavelet transform and fractal dimension tomography algorithm of Lamb wave,” IEEE Transactions on Instrumentation and Measurement, 2013, 62 (5): 1354–1363.
10.
Zurück zum Zitat Feng Z., Liang M., Chu F., “Recent advances in time–frequency analysis methods for machinery fault diagnosis: A review with application examples,” Mechanical Systems and Signal Processing, 2013, 38 (1): 165–205. Feng Z., Liang M., Chu F., “Recent advances in time–frequency analysis methods for machinery fault diagnosis: A review with application examples,” Mechanical Systems and Signal Processing, 2013, 38 (1): 165–205.
11.
Zurück zum Zitat Peng Z., Meng G., Chu F., et al., “Polynomial chirplet transform with application to instantaneous frequency estimation,” IEEE Transactions on Instrumentation and Measurement, 2011, 60 (9): 3222–3229. Peng Z., Meng G., Chu F., et al., “Polynomial chirplet transform with application to instantaneous frequency estimation,” IEEE Transactions on Instrumentation and Measurement, 2011, 60 (9): 3222–3229.
12.
Zurück zum Zitat He Q., “Time–frequency manifold for nonlinear feature extraction in machinery fault diagnosis,” Mechanical Systems and Signal Processing, 2013, 35 (1–2): 200–218. He Q., “Time–frequency manifold for nonlinear feature extraction in machinery fault diagnosis,” Mechanical Systems and Signal Processing, 2013, 35 (1–2): 200–218.
13.
Zurück zum Zitat Feng Z., Chen X., Liang M., “Iterative generalized synchrosqueezing transform for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions,” Mechanical Systems and Signal Processing, 2015, 52–53 (0): 360–375. Feng Z., Chen X., Liang M., “Iterative generalized synchrosqueezing transform for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions,” Mechanical Systems and Signal Processing, 2015, 52–53 (0): 360–375.
14.
Zurück zum Zitat Cai G., Chen X., He Z., “Sparsity-enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearboxm,” Mechanical Systems and Signal Processing, 2013, 41 (1–2): 34–53. Cai G., Chen X., He Z., “Sparsity-enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearboxm,” Mechanical Systems and Signal Processing, 2013, 41 (1–2): 34–53.
15.
Zurück zum Zitat Chen X., Du Z., Li J., et al., “Compressed sensing based on dictionary learning for extracting impulse components,” Signal Processing, 2014, 96: 94–109. Chen X., Du Z., Li J., et al., “Compressed sensing based on dictionary learning for extracting impulse components,” Signal Processing, 2014, 96: 94–109.
16.
Zurück zum Zitat Fan W., Cai G., Zhu Z.K., et al., “Sparse representation of transients in wavelet basis and its application in gearbox fault feature extraction,” Mechanical Systems and Signal Processing, 2015, 56: 230–245. Fan W., Cai G., Zhu Z.K., et al., “Sparse representation of transients in wavelet basis and its application in gearbox fault feature extraction,” Mechanical Systems and Signal Processing, 2015, 56: 230–245.
17.
Zurück zum Zitat He W., Ding Y., Zi Y., et al., “Sparsity-based algorithm for detecting faults in rotating machines,” Mechanical Systems and Signal Processing, 2015. He W., Ding Y., Zi Y., et al., “Sparsity-based algorithm for detecting faults in rotating machines,” Mechanical Systems and Signal Processing, 2015.
18.
Zurück zum Zitat Hu N., Chen M., Wen X., “The application of stochastic resonance theory for early detecting rub-impact fault of rotor system,” Mechanical Systems and Signal Processing, 2003, 17 (4): 883–895. Hu N., Chen M., Wen X., “The application of stochastic resonance theory for early detecting rub-impact fault of rotor system,” Mechanical Systems and Signal Processing, 2003, 17 (4): 883–895.
19.
Zurück zum Zitat Boashash B., “Estimating and interpreting the instantaneous frequency of a signal–part I. Fundamentals,” Proceedings of The IEEE, 1992, 80 (4): 520–538. Boashash B., “Estimating and interpreting the instantaneous frequency of a signal–part I. Fundamentals,” Proceedings of The IEEE, 1992, 80 (4): 520–538.
20.
Zurück zum Zitat Boashash B., “Estimating and interpreting the instantaneous frequency of a signal–part II. Algorithms and applications,” Proceedings of The IEEE, 1992, 80 (4): 540–568. Boashash B., “Estimating and interpreting the instantaneous frequency of a signal–part II. Algorithms and applications,” Proceedings of The IEEE, 1992, 80 (4): 540–568.
21.
Zurück zum Zitat Zhang Y., Obeidat B.A., Amin M.G., “Spatial polarimetric time-frequency distributions for direction-of-arrival estimations,” IEEE Transactions on Signal Processing, 2006, 54 (4): 1327–1340. Zhang Y., Obeidat B.A., Amin M.G., “Spatial polarimetric time-frequency distributions for direction-of-arrival estimations,” IEEE Transactions on Signal Processing, 2006, 54 (4): 1327–1340.
22.
Zurück zum Zitat Liu B., “Instantaneous frequency tracking under model uncertainty via dynamic model averaging and particle filtering,” IEEE Transactions on Wireless Communications, 2011, 10 (6): 1810–1819. Liu B., “Instantaneous frequency tracking under model uncertainty via dynamic model averaging and particle filtering,” IEEE Transactions on Wireless Communications, 2011, 10 (6): 1810–1819.
23.
Zurück zum Zitat Georgakis A., Stergioulas L., Giakas G., “Fatigue analysis of the surface EMG signal in isometric constant force contractions using the averaged instantaneous frequency,” IEEE Transactions on Biomedical Engineering, 2003, 50 (2): 262–265. Georgakis A., Stergioulas L., Giakas G., “Fatigue analysis of the surface EMG signal in isometric constant force contractions using the averaged instantaneous frequency,” IEEE Transactions on Biomedical Engineering, 2003, 50 (2): 262–265.
24.
Zurück zum Zitat Chen B., Zhang Z., Sun C., et al., “Fault feature extraction of gearbox by using overcomplete rational dilation discrete wavelet transform on signals measured from vibration sensors,” Mechanical Systems And Signal Processing, 2012, 33: 275–298. Chen B., Zhang Z., Sun C., et al., “Fault feature extraction of gearbox by using overcomplete rational dilation discrete wavelet transform on signals measured from vibration sensors,” Mechanical Systems And Signal Processing, 2012, 33: 275–298.
25.
Zurück zum Zitat Mallat S. A Wavelet Tour of Signal Processing, San Diego (CA): Academic press, 1998. Mallat S. A Wavelet Tour of Signal Processing, San Diego (CA): Academic press, 1998.
26.
Zurück zum Zitat Qian S., Chen D., “Joint time-frequency analysis,” IEEE Signal Processing Magazine, 1999, 16 (2): 52–67. Qian S., Chen D., “Joint time-frequency analysis,” IEEE Signal Processing Magazine, 1999, 16 (2): 52–67.
27.
Zurück zum Zitat Sejdić E., Djurović I., Jiang J., “Time–frequency feature representation using energy concentration: An overview of recent advances,” Digital Signal Processing, 2009, 19 (1): 153–183. Sejdić E., Djurović I., Jiang J., “Time–frequency feature representation using energy concentration: An overview of recent advances,” Digital Signal Processing, 2009, 19 (1): 153–183.
28.
Zurück zum Zitat Barkat B., Boashash B., “Instantaneous frequency estimation of polynomial FM signals using the peak of the PWVD: Statistical performance in the presence of additive Gaussian noise,” IEEE Transactions on Signal Processing, 1999, 47 (9): 2480–2490. Barkat B., Boashash B., “Instantaneous frequency estimation of polynomial FM signals using the peak of the PWVD: Statistical performance in the presence of additive Gaussian noise,” IEEE Transactions on Signal Processing, 1999, 47 (9): 2480–2490.
29.
Zurück zum Zitat Barkat B., “Instantaneous frequency estimation of nonlinear frequency-modulated signals in the presence of multiplicative and additive noise,” IEEE Transactions on Signal Processing, 2001, 49 (10): 2214–2222. Barkat B., “Instantaneous frequency estimation of nonlinear frequency-modulated signals in the presence of multiplicative and additive noise,” IEEE Transactions on Signal Processing, 2001, 49 (10): 2214–2222.
30.
Zurück zum Zitat Li X., Bi G., Stankovic S., et al., “Local polynomial Fourier transform: A review on recent developments and applications,” Signal Processing, 2011, 91 (6): 1370–1393. Li X., Bi G., Stankovic S., et al., “Local polynomial Fourier transform: A review on recent developments and applications,” Signal Processing, 2011, 91 (6): 1370–1393.
31.
Zurück zum Zitat Pei S.C., Huang S.G., “STFT with adaptive window width based on the chirp rate,” IEEE Transactions on Signal Processing, 2012, 60 (8): 4065–4080. Pei S.C., Huang S.G., “STFT with adaptive window width based on the chirp rate,” IEEE Transactions on Signal Processing, 2012, 60 (8): 4065–4080.
32.
Zurück zum Zitat Olhede S., Walden A., “A generalized demodulation approach to time-frequency projections for multicomponent signals,” Proceedings of the Royal Society A, 2005, 461: 2059–2179. Olhede S., Walden A., “A generalized demodulation approach to time-frequency projections for multicomponent signals,” Proceedings of the Royal Society A, 2005, 461: 2059–2179.
33.
Zurück zum Zitat Wang S., Chen X., Cai G., et al., “Matching demodulation transform and synchrosqueezing in time-frequency analysis,” IEEE Transactions on Signal Processing, 2014, 62 (1): 69–84. Wang S., Chen X., Cai G., et al., “Matching demodulation transform and synchrosqueezing in time-frequency analysis,” IEEE Transactions on Signal Processing, 2014, 62 (1): 69–84.
34.
Zurück zum Zitat Wang S., Chen X., Li G., et al., “Matching demodulation transform with application to feature extraction of rotor rub-impact fault,” IEEE Transactions on Instrumentation and Measurement, 2014, 63 (5): 1372–1383. Wang S., Chen X., Li G., et al., “Matching demodulation transform with application to feature extraction of rotor rub-impact fault,” IEEE Transactions on Instrumentation and Measurement, 2014, 63 (5): 1372–1383.
35.
Zurück zum Zitat Sejdic E., Djurovic I., Stankovic L., “Quantitative performance analysis of scalogram as instantaneous frequency estimator,” IEEE Transactions on Signal Processing, 2008, 56 (8): 3837–3845. Sejdic E., Djurovic I., Stankovic L., “Quantitative performance analysis of scalogram as instantaneous frequency estimator,” IEEE Transactions on Signal Processing, 2008, 56 (8): 3837–3845.
36.
Zurück zum Zitat Stankovic L., Dakovic M., Ivanovic V., “Performance of spectrogram as IF estimator,” Electronics Letters, 2001, 37 (12): 797–799. Stankovic L., Dakovic M., Ivanovic V., “Performance of spectrogram as IF estimator,” Electronics Letters, 2001, 37 (12): 797–799.
37.
Zurück zum Zitat Ioana C., Zhang Y.D., Amin M.G., et al., “Time-frequency characterization of micro-multipath signals in over-the-horizon radar,” IEEE Radar Conference, 2012: 0671–0675. Ioana C., Zhang Y.D., Amin M.G., et al., “Time-frequency characterization of micro-multipath signals in over-the-horizon radar,” IEEE Radar Conference, 2012: 0671–0675.
38.
Zurück zum Zitat Zhang Y., Amin M.G., Frazer G.J., “High-resolution time-frequency distributions for manoeuvring target detection in over-the-horizon radars,” IET Proceedings on Radar, Sonar and Navigation, 2003: 299–304. Zhang Y., Amin M.G., Frazer G.J., “High-resolution time-frequency distributions for manoeuvring target detection in over-the-horizon radars,” IET Proceedings on Radar, Sonar and Navigation, 2003: 299–304.
39.
Zurück zum Zitat Yang Y., Peng Z., Meng G., et al., “Characterize highly oscillating frequency modulation using generalized Warblet transform,” Mechanical Systems and Signal Processing, 2012, 26: 128–140. Yang Y., Peng Z., Meng G., et al., “Characterize highly oscillating frequency modulation using generalized Warblet transform,” Mechanical Systems and Signal Processing, 2012, 26: 128–140.
40.
Zurück zum Zitat Katkovnik V., Stankovic L.J., “Instantaneous frequency estimation using the Wigner distribution with varying and data-driven window length,” IEEE Transactions on Signal Processing, 1998, 46 (9): 2315–2325. Katkovnik V., Stankovic L.J., “Instantaneous frequency estimation using the Wigner distribution with varying and data-driven window length,” IEEE Transactions on Signal Processing, 1998, 46 (9): 2315–2325.
41.
Zurück zum Zitat Stankovic L., “A method for time-frequency analysis,” IEEE Transactions on Signal Processing, 1994, 42 (1): 225–229. Stankovic L., “A method for time-frequency analysis,” IEEE Transactions on Signal Processing, 1994, 42 (1): 225–229.
42.
Zurück zum Zitat Orovic I., Stankovic S., Thayaparan T., et al., “Multiwindow S-method for instantaneous frequency estimation and its application in radar signal analysis,” IET Signal Processing, 2010, 4 (4): 363–370. Orovic I., Stankovic S., Thayaparan T., et al., “Multiwindow S-method for instantaneous frequency estimation and its application in radar signal analysis,” IET Signal Processing, 2010, 4 (4): 363–370.
43.
Zurück zum Zitat Daubechies I., Lu J., Wu H-T., “Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool,” Applied and Computational Harmonic Analysis, 2011, 30 (2): 243–261. Daubechies I., Lu J., Wu H-T., “Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool,” Applied and Computational Harmonic Analysis, 2011, 30 (2): 243–261.
44.
Zurück zum Zitat Li C., Liang M., “Time-frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform,” Mechanical Systems and Signal Processing, 2012, 26: 205–217. Li C., Liang M., “Time-frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform,” Mechanical Systems and Signal Processing, 2012, 26: 205–217.
45.
Zurück zum Zitat Li C., Liang M., “A generalized synchrosqueezing transform for enhancing signal time–frequency representation,” Signal Processing, 2012, 92 (9): 2264–2274. Li C., Liang M., “A generalized synchrosqueezing transform for enhancing signal time–frequency representation,” Signal Processing, 2012, 92 (9): 2264–2274.
Metadaten
Titel
Matching Demodulation Transform and Its Application in Machine Fault Diagnosis
verfasst von
Xuefeng Chen
Shibin Wang
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-56126-4_7

Neuer Inhalt