Skip to main content

2017 | OriginalPaper | Buchkapitel

Time-Frequency Manifold for Machinery Fault Diagnosis

verfasst von : Qingbo He, Xiaoxi Ding

Erschienen in: Structural Health Monitoring

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter a new method called time-frequency manifold (TFM) is reported for signature enhancement and sparse representation of non-stationary signals for machinery fault diagnosis. In the framework of the TFM analysis, the phase space reconstruction is firstly employed to reconstruct the dynamic manifold embedded in an analysed signal, then the time-frequency distributions (TFDs) are generated in the reconstructed phase space to represent the non-stationary information, and manifold learning is finally addressed on the TFDs to discover intrinsic TFM structure. In this process, the TFM combines non-stationary information and nonlinear information simultaneously. This will provide a better time-frequency signature with the merits of noise suppression and resolution enhancement for machine health diagnosis. Furthermore, a TFM synthesis approach is further reported to explicitly recover the transient signal from the TFM signature by combining the sparse theory with the TFM structure. The objective of the introduced work is to exploit a TFM technology for enhancing the time-frequency signature and representing the transient feature with in-band noise suppression for machine fault signature analysis and transient feature extraction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Peng, Z. K. and Chu, F. L., “Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography”, Mechanical Systems and Signal Processing, 2004, 18(2): 199–221. Peng, Z. K. and Chu, F. L., “Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography”, Mechanical Systems and Signal Processing, 2004, 18(2): 199–221.
2.
Zurück zum Zitat Hammond J K and White P R., “The analysis of non-stationary signals using time-frequency methods”, Journal of Sound and Vibration, 1996, 190(3): 419–447. Hammond J K and White P R., “The analysis of non-stationary signals using time-frequency methods”, Journal of Sound and Vibration, 1996, 190(3): 419–447.
3.
Zurück zum Zitat Yan R. and Gao R. X., “Hilbert–Huang transform-based vibration signal analysis for machine health monitoring”, IEEE Transactions on Instrumentation and measurement, 2006, 55(6): 2320–2329. Yan R. and Gao R. X., “Hilbert–Huang transform-based vibration signal analysis for machine health monitoring”, IEEE Transactions on Instrumentation and measurement, 2006, 55(6): 2320–2329.
4.
Zurück zum Zitat Malhi A. and Gao R X., “PCA-based feature selection scheme for machine defect classification”, IEEE Transactions on Instrumentation and Measurement, 2004, 53(6): 1517–1525. Malhi A. and Gao R X., “PCA-based feature selection scheme for machine defect classification”, IEEE Transactions on Instrumentation and Measurement, 2004, 53(6): 1517–1525.
5.
Zurück zum Zitat Wang Y., Xiang J., Markert R., and Liang M., “Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications”, Mechanical Systems and Signal Processing, 2016, 66: 679–698. Wang Y., Xiang J., Markert R., and Liang M., “Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications”, Mechanical Systems and Signal Processing, 2016, 66: 679–698.
6.
Zurück zum Zitat Feng Z, Zuo M J. and Chu F., “Application of regularization dimension to gear damage assessment”, Mechanical Systems and Signal Processing, 2010, 24(4): 1081–1098. Feng Z, Zuo M J. and Chu F., “Application of regularization dimension to gear damage assessment”, Mechanical Systems and Signal Processing, 2010, 24(4): 1081–1098.
7.
Zurück zum Zitat Yan R. and Gao R X., “Complexity as a measure for machine health evaluation”, IEEE Transactions on Instrumentation and Measurement, 2004, 53(4): 1327–1334. Yan R. and Gao R X., “Complexity as a measure for machine health evaluation”, IEEE Transactions on Instrumentation and Measurement, 2004, 53(4): 1327–1334.
8.
Zurück zum Zitat Wang G F, Li Y B. and Luo Z G., “Fault classification of rolling bearing based on reconstructed phase space and Gaussian mixture model”, Journal of Sound and Vibration, 2009, 323(3): 1077–1089. Wang G F, Li Y B. and Luo Z G., “Fault classification of rolling bearing based on reconstructed phase space and Gaussian mixture model”, Journal of Sound and Vibration, 2009, 323(3): 1077–1089.
9.
Zurück zum Zitat He Q., Kong F. and Yan R., “Subspace-based gearbox condition monitoring by kernel principal component analysis”, Mechanical Systems and Signal Processing, 2007, 21(4): 1755–1772. He Q., Kong F. and Yan R., “Subspace-based gearbox condition monitoring by kernel principal component analysis”, Mechanical Systems and Signal Processing, 2007, 21(4): 1755–1772.
10.
Zurück zum Zitat Braun S., “The synchronous (time domain) average revisited, Mechanical Systems and Signal Processing”, 2011, 25(4): 1087–1102. Braun S., “The synchronous (time domain) average revisited, Mechanical Systems and Signal Processing”, 2011, 25(4): 1087–1102.
11.
Zurück zum Zitat Antoni J., “Fast computation of the kurtogram for the detection of transient faults”, Mechanical Systems and Signal Processing, 2007, 21(1): 108–124. Antoni J., “Fast computation of the kurtogram for the detection of transient faults”, Mechanical Systems and Signal Processing, 2007, 21(1): 108–124.
12.
Zurück zum Zitat Amar M., Gondal I., and Wilson C., “Vibration Spectrum Imaging: A Novel Bearing Fault Classification Approach”, IEEE Transactions on Industrial Electronics, 2015, 62: 494–502. Amar M., Gondal I., and Wilson C., “Vibration Spectrum Imaging: A Novel Bearing Fault Classification Approach”, IEEE Transactions on Industrial Electronics, 2015, 62: 494–502.
13.
Zurück zum Zitat Yang Y., Yu D.J. and Cheng J.S., “A roller bearing fault diagnosis method based on EMD energy entropy and ANN”, Journal of Sound and Vibration, 2006, 294: 269–277. Yang Y., Yu D.J. and Cheng J.S., “A roller bearing fault diagnosis method based on EMD energy entropy and ANN”, Journal of Sound and Vibration, 2006, 294: 269–277.
14.
Zurück zum Zitat Cui L., Wang J. and Lee S., “Matching pursuit of an adaptive impulse dictionary for bearing fault diagnosis”, Journal of Sound and Vibration, 2014, 333(10): 2840–2862. Cui L., Wang J. and Lee S., “Matching pursuit of an adaptive impulse dictionary for bearing fault diagnosis”, Journal of Sound and Vibration, 2014, 333(10): 2840–2862.
15.
Zurück zum Zitat Guo L., Gao H., Li J., Huang H. and Zhang X., “Machinery vibration signal denoising based on learned dictionary and sparse representation”, Journal of Physics: Conference Series. IOP Publishing, 2015, 628(1): 012124. Guo L., Gao H., Li J., Huang H. and Zhang X., “Machinery vibration signal denoising based on learned dictionary and sparse representation”, Journal of Physics: Conference Series. IOP Publishing, 2015, 628(1): 012124.
16.
Zurück zum Zitat Roweis S.T. and Saul L.K., “Nonlinear dimensionality reduction by locally linear embedding”, Science, 2000, 290(5500): 2323–2326. Roweis S.T. and Saul L.K., “Nonlinear dimensionality reduction by locally linear embedding”, Science, 2000, 290(5500): 2323–2326.
17.
Zurück zum Zitat Tenenbaum J.B., De Silva V. and Langford J.C., “A global geometric framework for nonlinear dimensionality reduction”, Science, 2000, 290(5500): 2319–2323. Tenenbaum J.B., De Silva V. and Langford J.C., “A global geometric framework for nonlinear dimensionality reduction”, Science, 2000, 290(5500): 2319–2323.
18.
Zurück zum Zitat Zhang Z. and Zha H., “Principal manifolds and nonlinear dimensionality reduction via tangent space alignment”, Journal of Shanghai University (English Edition), 2004, 8(4): 406–424. Zhang Z. and Zha H., “Principal manifolds and nonlinear dimensionality reduction via tangent space alignment”, Journal of Shanghai University (English Edition), 2004, 8(4): 406–424.
19.
Zurück zum Zitat Li M., Xu J., Yang J., Yang D. and Wang D., “Multiple manifolds analysis and its application to fault diagnosis”, Mechanical Systems and Signal Processing, 2009, 23(8): 2500–2509. Li M., Xu J., Yang J., Yang D. and Wang D., “Multiple manifolds analysis and its application to fault diagnosis”, Mechanical Systems and Signal Processing, 2009, 23(8): 2500–2509.
20.
Zurück zum Zitat He Q., Liu Y., Wang J. and Gong C., “Time-frequency manifold for gear fault signature analysis,” Instrumentation and Measurement Technology Conference (I2MTC), 2011 IEEE. IEEE, 2011: 1–5. He Q., Liu Y., Wang J. and Gong C., “Time-frequency manifold for gear fault signature analysis,” Instrumentation and Measurement Technology Conference (I2MTC), 2011 IEEE. IEEE, 2011: 1–5.
21.
Zurück zum Zitat He Q., Liu Y., Long Q., and Wang J., “Time-frequency manifold as a signature for machine health diagnosis,” IEEE Transactions on Instrumentation and Measurement, 2012, 61(5): 1218–1230. He Q., Liu Y., Long Q., and Wang J., “Time-frequency manifold as a signature for machine health diagnosis,” IEEE Transactions on Instrumentation and Measurement, 2012, 61(5): 1218–1230.
22.
Zurück zum Zitat Wang J., He Q. and Kong F., “Automatic fault diagnosis of rotating machines by time-scale manifold ridge analysis”, Mechanical Systems and Signal Processing, 2013, 40(1): 237–256. Wang J., He Q. and Kong F., “Automatic fault diagnosis of rotating machines by time-scale manifold ridge analysis”, Mechanical Systems and Signal Processing, 2013, 40(1): 237–256.
23.
Zurück zum Zitat He Q. and Wang X., “Time-frequency manifold correlation matching for periodic fault identification in rotating machines”, Journal of Sound and Vibration, 2013, 332(10): 2611–2626. He Q. and Wang X., “Time-frequency manifold correlation matching for periodic fault identification in rotating machines”, Journal of Sound and Vibration, 2013, 332(10): 2611–2626.
24.
Zurück zum Zitat Wang J. and He Q., “Exchanged ridge demodulation of time-scale manifold for enhanced fault diagnosis of rotating machinery”, Journal of Sound and Vibration, 2014, 333(11): 2450–2464. Wang J. and He Q., “Exchanged ridge demodulation of time-scale manifold for enhanced fault diagnosis of rotating machinery”, Journal of Sound and Vibration, 2014, 333(11): 2450–2464.
25.
Zurück zum Zitat Wang X. and He Q., “ Machinery Fault Signal Reconstruction Using Time-Frequency Manifold”, Engineering Asset Management – Systems, Professional Practices and Certification, Tse, PW; Mathew, J; Wong, K; Lam, R; Ko, CN, Berlin: Springer-Verlag, Germany, 2015: 777–787. Wang X. and He Q., “ Machinery Fault Signal Reconstruction Using Time-Frequency Manifold”, Engineering Asset Management – Systems, Professional Practices and Certification, Tse, PW; Mathew, J; Wong, K; Lam, R; Ko, CN, Berlin: Springer-Verlag, Germany, 2015: 777–787.
26.
Zurück zum Zitat He Q., Wang X. and Zhou Q., “Vibration sensor data denoising using a time-frequency manifold for machinery fault diagnosis”, Sensors, 2013, 14(1): 382–402. He Q., Wang X. and Zhou Q., “Vibration sensor data denoising using a time-frequency manifold for machinery fault diagnosis”, Sensors, 2013, 14(1): 382–402.
27.
Zurück zum Zitat Kennel M.B., Brown R. and Abarbanel H.D.I., “Determining embedding dimension for phase-space reconstruction using a geometrical construction”, Physical Review A, 1992, 45(6): 3403. Kennel M.B., Brown R. and Abarbanel H.D.I., “Determining embedding dimension for phase-space reconstruction using a geometrical construction”, Physical Review A, 1992, 45(6): 3403.
28.
Zurück zum Zitat Cao L., “Practical method for determining the minimum embedding dimension of a scalar time series”, Physica D: Nonlinear Phenomena, 1997, 110(1): 43–50. Cao L., “Practical method for determining the minimum embedding dimension of a scalar time series”, Physica D: Nonlinear Phenomena, 1997, 110(1): 43–50.
29.
Zurück zum Zitat Takens F., “Detecting strange attractors in turbulence”, Springer Berlin Heidelberg, 1981. Takens F., “Detecting strange attractors in turbulence”, Springer Berlin Heidelberg, 1981.
30.
Zurück zum Zitat He, Q., Song H. and Ding X., “Sparse signal reconstruction based on time-frequency manifold for rolling element bearing fault signature enhancement”, IEEE Transactions on Instrumentation and Measurement, 2016, 65(2): 482–491. He, Q., Song H. and Ding X., “Sparse signal reconstruction based on time-frequency manifold for rolling element bearing fault signature enhancement”, IEEE Transactions on Instrumentation and Measurement, 2016, 65(2): 482–491.
Metadaten
Titel
Time-Frequency Manifold for Machinery Fault Diagnosis
verfasst von
Qingbo He
Xiaoxi Ding
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-56126-4_6

Neuer Inhalt