Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 9/2011

01.09.2011

Specific contact resistance measurements of the screen-printed Ag thick film contacts in the silicon solar cells by three-point probe methodology and TLM method

verfasst von: P. N. Vinod

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 9/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The specific contact resistance of the screen-printed Ag contacts in the silicon solar cells has been investigated by applying two independent test methodologies such as three-point probe (TPP) and well-known transfer length model (TLM) test structure respectively. This paper presents some comparative results obtained with these two measurement techniques for the screen-printed Ag contacts formed on the porous silicon antireflection coating (ARC) in the crystalline silicon solar cells. The contact structure consists of thick-film Ag metal contacts patterned on the top of the etched porous silicon surface. Five different contact formation temperatures ranging from 725 to 825 °C for few minutes in air ambient followed by a short time annealing step at about 450 °C in nitrogen ambient was applied to the test samples in order to study the specific contact resistance of the screen-printed Ag metal contact structure. The specific contact resistance of the Ag metal contacts extracted based on the TPP as well as TLM test methodologies has been compared and verified. It shows that the extraction procedure based on the TPP method results in specific contact resistance, ρ c  = 2.15 × 10−6 Ω-cm2 indicating that screen-printed Ag contacts has excellent ohmic properties whereas in the case of TLM method, the best value of the specific contact resistance was found to be about ρ c  = 8.34 × 10−5 Ω-cm2. These results indicate that the ρ c value extracted for the screen-printed Ag contacts by TPP method is one order of magnitude lower than that of the corresponding value of the ρ c extracted by TLM method. The advantages and limitations of each of these techniques for quantitatively evaluating the specific contact resistance of the screen-printed Ag contacts are also discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The front contact paste is a mixture of Ag with various organic binders and additives to ensure a better adhesion of the sintered contacts with Si surface. The lead borosilicate glass frit is commonly used in the commercial Ag metal paste plays an important role in the contact formation and helps to achieve the adhesion of the Ag paste to Si surface after the initial firing step [14]. The glass frit in its molten state is highly reactive; it wets and effectively etches the heavily doped silicon surface and modifies the sheet resistance underneath the metal contact.
 
Literatur
1.
2.
Zurück zum Zitat P. Doshi, J. Meija, K. Tate, A. Rohatgi, IEEE Trans. Electron Dev. ED-44(9), 1417–1423 (1997) P. Doshi, J. Meija, K. Tate, A. Rohatgi, IEEE Trans. Electron Dev. ED-44(9), 1417–1423 (1997)
4.
Zurück zum Zitat D.K. Schroder, D.L. Meier, IEEE Trans. Electron Dev. 31, 631–637 (1984) D.K. Schroder, D.L. Meier, IEEE Trans. Electron Dev. 31, 631–637 (1984)
5.
6.
Zurück zum Zitat S.M. Sze, Physics of the semiconductor devices (Wiley, New York, 1982) S.M. Sze, Physics of the semiconductor devices (Wiley, New York, 1982)
8.
Zurück zum Zitat W. Shockley, Report No. A1-TOR-64-207 (September 1964, Air Force Atomic Laboratory, Wright-Patterson Air Force Base, OH, USA) W. Shockley, Report No. A1-TOR-64-207 (September 1964, Air Force Atomic Laboratory, Wright-Patterson Air Force Base, OH, USA)
9.
Zurück zum Zitat G.K. Reeves, H.B. Harrison, IEEE Trans. Electron Dev. Lett. EDL-3, 111–113 (1982) G.K. Reeves, H.B. Harrison, IEEE Trans. Electron Dev. Lett. EDL-3, 111–113 (1982)
10.
Zurück zum Zitat S.J. Proctor, L.W. Lindholm, IEEE Trans. Electron Dev. Lett. EDL-3, 294–296 (1982) S.J. Proctor, L.W. Lindholm, IEEE Trans. Electron Dev. Lett. EDL-3, 294–296 (1982)
11.
Zurück zum Zitat J. Chen, W.L. Oldham, IEEE Trans. Electron Dev. Lett. EDL-5, 178–180 (1984) J. Chen, W.L. Oldham, IEEE Trans. Electron Dev. Lett. EDL-5, 178–180 (1984)
12.
Zurück zum Zitat M. Melczarsky, G. Gallego Garcia, N.E. Posthuma, E. Van Kerschaver, G. Beaucarne, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference (PVSC) Philadelphia, PA, 2009, 960–963 M. Melczarsky, G. Gallego Garcia, N.E. Posthuma, E. Van Kerschaver, G. Beaucarne, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference (PVSC) Philadelphia, PA, 2009, 960–963
13.
Zurück zum Zitat P.N. Vinod, B.C. Chakravarty, R. Kumar, M. Lal, S.N. Singh, Semicond. Sci. Technol. 15, 286–290 (2000)CrossRef P.N. Vinod, B.C. Chakravarty, R. Kumar, M. Lal, S.N. Singh, Semicond. Sci. Technol. 15, 286–290 (2000)CrossRef
16.
Zurück zum Zitat D.K. Schroder, Semiconductor Material and Device Characterization, 2nd edn. (Wiley, New York, 1998) D.K. Schroder, Semiconductor Material and Device Characterization, 2nd edn. (Wiley, New York, 1998)
17.
Zurück zum Zitat P.N. Vinod, J. Mater. Sci.: Mater. Electron. 21, 730–736 (2010) P.N. Vinod, J. Mater. Sci.: Mater. Electron. 21, 730–736 (2010)
18.
Zurück zum Zitat P.N. Vinod, M. Lal, J. Mater. Sci.: Mater. Electron. 16, 1–6 (2005)CrossRef P.N. Vinod, M. Lal, J. Mater. Sci.: Mater. Electron. 16, 1–6 (2005)CrossRef
19.
Zurück zum Zitat P.N. Vinod, in Proceedings of the 34th IEEE Photovoltaic Specialists Conference (PVSC), 2009, 1341–1434 P.N. Vinod, in Proceedings of the 34th IEEE Photovoltaic Specialists Conference (PVSC), 2009, 1341–1434
22.
Zurück zum Zitat C. Ballif, D.M. Huljic, G. Willeke, A. Hessler-Wyser, Appl. Phys. Lett. 82, 1878–1880 (2003)CrossRef C. Ballif, D.M. Huljic, G. Willeke, A. Hessler-Wyser, Appl. Phys. Lett. 82, 1878–1880 (2003)CrossRef
23.
Zurück zum Zitat Y.S. Chung, H.G. Kim, IEEE Trans. Compon. Hybrids Manuf. Technol. 11, 195–199 (1988)CrossRef Y.S. Chung, H.G. Kim, IEEE Trans. Compon. Hybrids Manuf. Technol. 11, 195–199 (1988)CrossRef
24.
Zurück zum Zitat P.N. Vinod, in Proceedings of the 33rd IEEE Photovoltaic Specialist Conference (PVSC), San Diego, CA (11–16 May 2008) 1–5 P.N. Vinod, in Proceedings of the 33rd IEEE Photovoltaic Specialist Conference (PVSC), San Diego, CA (11–16 May 2008) 1–5
26.
Zurück zum Zitat A. Mette, D. Pysch, G. Emanuel, D. Erath, R. Preu, S.W. Glunz, Prog. Photovolt. Res. Appl. 15, 493–505 (2007)CrossRef A. Mette, D. Pysch, G. Emanuel, D. Erath, R. Preu, S.W. Glunz, Prog. Photovolt. Res. Appl. 15, 493–505 (2007)CrossRef
27.
Zurück zum Zitat M. Horties, S.W. Glunz, Prog. Photovolt. Res. Appl. 16, 555–560 (2007)CrossRef M. Horties, S.W. Glunz, Prog. Photovolt. Res. Appl. 16, 555–560 (2007)CrossRef
28.
Zurück zum Zitat S.P. Zimin, V.S. Kuznetsova, A.V. Prokaznikov, Appl. Surf. Sci. 91, 355–358 (1995) S.P. Zimin, V.S. Kuznetsova, A.V. Prokaznikov, Appl. Surf. Sci. 91, 355–358 (1995)
29.
Zurück zum Zitat C.Y. Chang, Y.K. Feng, S.M. Sze, Solid-State Electron. 14, 541–554 (1971)CrossRef C.Y. Chang, Y.K. Feng, S.M. Sze, Solid-State Electron. 14, 541–554 (1971)CrossRef
30.
32.
Zurück zum Zitat F.A. Podovani, R. Stratton, Solid State Electron. 9, 965–976 (1966) F.A. Podovani, R. Stratton, Solid State Electron. 9, 965–976 (1966)
Metadaten
Titel
Specific contact resistance measurements of the screen-printed Ag thick film contacts in the silicon solar cells by three-point probe methodology and TLM method
verfasst von
P. N. Vinod
Publikationsdatum
01.09.2011
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 9/2011
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-011-0295-z

Weitere Artikel der Ausgabe 9/2011

Journal of Materials Science: Materials in Electronics 9/2011 Zur Ausgabe

Neuer Inhalt