Skip to main content
Erschienen in: Thermal Engineering 6/2020

01.06.2020 | METALS AND STRENGTH ANALYSIS

Specific Features of Electron-Beam Welding of ITER Blanket First Wall Components

verfasst von: V. K. Dragunov, A. P. Sliva, A. L. Goncharov, I. E. Zhmurko, E. V. Terent’ev, A. G. Sysoev, A. Yu. Marchenkov

Erschienen in: Thermal Engineering | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Specific features of fabricating welded structures of the international thermonuclear experimental reactor (ITER) blanket components are considered. The results from elaborating the technology for electron-beam welding of cooling system’s channel caps in the first wall bearing structure (FWBS) of the ITER blanket shielding module are presented. The design of welded joint samples made of Grade 316L(N) steel and the welding equipment are described. The welding techniques and butt joint design features whose use makes it possible to obtain the required strengthening of weld bead and to avoid metal droplets from appearing in the FWBS inner cavities are considered. A simplified thermal–mechanical model of the cap-welding technological process is described, and the results from experimentally evaluating the structural and mechanical state of the obtained welded structures are presented. A comparison between the modeling and experimental results is given. It is pointed out that the stressed and strain state varies in an active manner at the initial loading stage. Initially, the metal in the heat-affected zone (HAZ) experiences plastic deformation followed by elastic relief at the subsequent stages. It is pointed out that the postweld deformations are on the whole characterized by a low level and remain within the permissible limits. The distribution of mechanical properties in weld joint local zones determined using the indentation method is given. The results from tensile tests and an indenter impressing test show that the weld metal has even better mechanical characteristics than the parent metal. Data are presented from metallographic investigations, which testify that there is no growth of grains in the HAZ, which is due to high rates of cooling in the used welding method. Based on the results of elaborating the electron-beam welding technology and using the developed techniques, an FWBS mockup has been fabricated that complies with the class VQC 1A tightness requirements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat I. V. Danilov, A. Yu. Leshukov, A. V. Razmerov, M. N. Sviridenko, Yu. S. Strebkov, I. V. Mazul’, A. A. Gervash, and A. N. Labusov, “The supporting structure of the first wall of the ITER blanket module,” Vopr. At. Nauki Tekh. Ser. Termoyad. Sint. 36 (1), 17–43 (2013). I. V. Danilov, A. Yu. Leshukov, A. V. Razmerov, M. N. Sviridenko, Yu. S. Strebkov, I. V. Mazul’, A. A. Gervash, and A. N. Labusov, “The supporting structure of the first wall of the ITER blanket module,” Vopr. At. Nauki Tekh. Ser. Termoyad. Sint. 36 (1), 17–43 (2013).
2.
Zurück zum Zitat K. S. Skladnov, V. N. Moskalev, and V. M. Efimov, “Technological problems of manufacturing the first wall for ITER shielding blanket module,” Vopr. At. Nauki Tekh. Ser. Termoyad. Sint. 28 (3), 56–64 (2005). K. S. Skladnov, V. N. Moskalev, and V. M. Efimov, “Technological problems of manufacturing the first wall for ITER shielding blanket module,” Vopr. At. Nauki Tekh. Ser. Termoyad. Sint. 28 (3), 56–64 (2005).
3.
Zurück zum Zitat V. N. Volchenko, V. M. Yampol’skii, V. A. Vinokurov, V. A. Parakhin, V. I. Ermolaeva, E. L. Makarov, A. G. Grigor’yants, V. S. Gavrilyuk, and V. V. Ship, Theory of Welding Processes. Textbook, Ed. by V. V. Frolov (Vysshaya Shkola, Moscow, 1988) [in Russian]. V. N. Volchenko, V. M. Yampol’skii, V. A. Vinokurov, V. A. Parakhin, V. I. Ermolaeva, E. L. Makarov, A. G. Grigor’yants, V. S. Gavrilyuk, and V. V. Ship, Theory of Welding Processes. Textbook, Ed. by V. V. Frolov (Vysshaya Shkola, Moscow, 1988) [in Russian].
4.
Zurück zum Zitat B. E. Paton, V. N. Bernadskii, and O. K. Nazarenko, “The trend in the development of electron beam welding,” Avtom. Svarka, No. 10, 1–8 (1976). B. E. Paton, V. N. Bernadskii, and O. K. Nazarenko, “The trend in the development of electron beam welding,” Avtom. Svarka, No. 10, 1–8 (1976).
5.
Zurück zum Zitat V. Ya. Belen’kii, “Electron beam scan along an X-shaped path as a means of reducing defects in the root of a seam during electron beam welding,” Avtom. Svarka, No. 9, 35–37 (1986). V. Ya. Belen’kii, “Electron beam scan along an X-shaped path as a means of reducing defects in the root of a seam during electron beam welding,” Avtom. Svarka, No. 9, 35–37 (1986).
6.
Zurück zum Zitat K. S. Akop’yants, “Prevention of the formation of root defects in electron beam welding,” Avtom. Svarka, No. 6, 59–61 (1984). K. S. Akop’yants, “Prevention of the formation of root defects in electron beam welding,” Avtom. Svarka, No. 6, 59–61 (1984).
7.
Zurück zum Zitat G. A. Shilov, K. S. Akop’yants, and O. G. Kasatkin, “Influence of the frequency and diameter of the circular scan of an electron beam on penetration in electron beam welding,” Avtom. Svarka, No. 8, 25–28 (1983). G. A. Shilov, K. S. Akop’yants, and O. G. Kasatkin, “Influence of the frequency and diameter of the circular scan of an electron beam on penetration in electron beam welding,” Avtom. Svarka, No. 8, 25–28 (1983).
8.
Zurück zum Zitat V. M. Matyunin, Indentation in the Diagnostics of Mechanical Properties of Materials (Mosk. Energ. Inst., Moscow, 2015) [in Russian]. V. M. Matyunin, Indentation in the Diagnostics of Mechanical Properties of Materials (Mosk. Energ. Inst., Moscow, 2015) [in Russian].
9.
Zurück zum Zitat M. S. Drozd, M. M. Matlin, and Yu. I. Sidyakin, Engineering Calculations of Elastoplastic Contact Deformation (Mashinostroenie, Moscow, 1986) [in Russian]. M. S. Drozd, M. M. Matlin, and Yu. I. Sidyakin, Engineering Calculations of Elastoplastic Contact Deformation (Mashinostroenie, Moscow, 1986) [in Russian].
10.
Zurück zum Zitat GOST 22761-77. Metals and Alloys. Method of Measuring Brinell Hardness by Static Action Portable Hardness Meters (Izd. Standartov, Moscow, 1977). GOST 22761-77. Metals and Alloys. Method of Measuring Brinell Hardness by Static Action Portable Hardness Meters (Izd. Standartov, Moscow, 1977).
11.
Zurück zum Zitat GOST 22762-77. Metals and Alloys. Yield Point Hardness Test by Ball Indentation (Izd. Standartov, Moscow, 1977). GOST 22762-77. Metals and Alloys. Yield Point Hardness Test by Ball Indentation (Izd. Standartov, Moscow, 1977).
12.
Zurück zum Zitat V. K. Dragunov, A. P. Sliva, and A. M. Myasnikova, “A method of obtaining a butt joint connection of different thickness parts,” RF Patent No. 2 510 316 S1, Byull. Izobret., No. 9 (2014). V. K. Dragunov, A. P. Sliva, and A. M. Myasnikova, “A method of obtaining a butt joint connection of different thickness parts,” RF Patent No. 2 510 316 S1, Byull. Izobret., No. 9 (2014).
13.
Zurück zum Zitat R. N. Giniyatulin, I. V. Mazul, A. A. Gervash, T. M. Guryeva, V. E. Kuznetcov, A. N. Makhankov, A. A. Okunev, and O. N. Sevrukov, “Overview of manufacturing technologies under development in Russia for ITER plasma pacing technologies,” Fusion Eng. Des. 136, 527–533 (2018).CrossRef R. N. Giniyatulin, I. V. Mazul, A. A. Gervash, T. M. Guryeva, V. E. Kuznetcov, A. N. Makhankov, A. A. Okunev, and O. N. Sevrukov, “Overview of manufacturing technologies under development in Russia for ITER plasma pacing technologies,” Fusion Eng. Des. 136, 527–533 (2018).CrossRef
14.
Zurück zum Zitat H. Tanigawa, T. Maruyama, Y. Noguchi, N. Takeda, and S. Kakudate, “Laser welding to expand the allowable gap in bore welding for ITER blanket hydraulic connection technologies,” Fusion Eng. Des. 98–99, 1634–1637 (2015).CrossRef H. Tanigawa, T. Maruyama, Y. Noguchi, N. Takeda, and S. Kakudate, “Laser welding to expand the allowable gap in bore welding for ITER blanket hydraulic connection technologies,” Fusion Eng. Des. 98–99, 1634–1637 (2015).CrossRef
15.
Zurück zum Zitat I. V. Mazul, V. A. Belyakov, A. A. Gervash, R. N. Giniyatulin, T. M. Guryeva, V. E. Kuznetsov, A. N. Makhankov, A. A. Okunev, and O. N. Sevryukov, “Technological challenges at ITER plasma facing components production in Russia,” Fusion Eng. Des. 109–111, 1028–1034 (2016).CrossRef I. V. Mazul, V. A. Belyakov, A. A. Gervash, R. N. Giniyatulin, T. M. Guryeva, V. E. Kuznetsov, A. N. Makhankov, A. A. Okunev, and O. N. Sevryukov, “Technological challenges at ITER plasma facing components production in Russia,” Fusion Eng. Des. 109–111, 1028–1034 (2016).CrossRef
16.
Zurück zum Zitat S. Mazaev, T. Gurieva, A. Lapin, A. Makhankov, V. Mirgorodsky, S. Natochev, O. Nomokonova, and I. Vlasov, “Laser welding of plasma facing units for ITER divertor dome manufacturing,” in Proc. IEEE/NPSS 24th Symp. on Fusion Engineering, Chicago, IL, June 26–30, 2011 (IEEE, Piscataway, NJ, 2011). S. Mazaev, T. Gurieva, A. Lapin, A. Makhankov, V. Mirgorodsky, S. Natochev, O. Nomokonova, and I. Vlasov, “Laser welding of plasma facing units for ITER divertor dome manufacturing,” in Proc. IEEE/NPSS 24th Symp. on Fusion Engineering, Chicago, IL, June 26–30, 2011 (IEEE, Piscataway, NJ, 2011).
Metadaten
Titel
Specific Features of Electron-Beam Welding of ITER Blanket First Wall Components
verfasst von
V. K. Dragunov
A. P. Sliva
A. L. Goncharov
I. E. Zhmurko
E. V. Terent’ev
A. G. Sysoev
A. Yu. Marchenkov
Publikationsdatum
01.06.2020
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 6/2020
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601520060026

Weitere Artikel der Ausgabe 6/2020

Thermal Engineering 6/2020 Zur Ausgabe

HEAT AND MASS TRANSFER AND PROPERTIES OF WORKING FLUIDS AND MATERIALS

The Flow Boiling Crisis of Saturated Water in Pipes at High Pressures

STEAM BOILERS, POWER PLANT FUELS, BURNER UNITS, AND BOILER AUXILIARY EQUIPMENT

Cyclone-Bed Furnaces: Experimental Studies and Thermal Design

    Premium Partner