Skip to main content
Erschienen in: Thermal Engineering 6/2020

01.06.2020 | METALS AND STRENGTH ANALYSIS

The Effect of Heat-and-Mass Transfer and Flow Hydrodynamics on the Flow Accelerated Corrosion Rate in Evaporators of Combined-Cycle Unit Heat-Recovery Steam Generators

verfasst von: V. S. Polonsky, D. A. Tarasov, D. A. Gorr

Erschienen in: Thermal Engineering | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Flow accelerated corrosion (FAC) is considered one of the major causes of damage to heat-recovery steam generators (HRSG) of combined-cycle units. In the last few decades, a great number of papers devoted to this problem have been published in many countries around the world. The results of investigations were analyzed as a rule, on the basis of the flow-averaged thermochemical parameters of the flow, while the features of the near-wall liquid film determining the FAC rate were not taken into account. The indicators in the near-wall region depends on the heat-and-mass transfer conditions, flow hydrodynamics, and the specific of chemicals used to correct the water chemistry (WC). For ammonia and oxygen water treatment chemistries, an equilibrium model is proposed and its validity for HRSG evaporators is substantiated. The rate of the exchange of gas reagents between steam and water is determined by the distribution coefficient Kd. To simplify calculations, simple approximating correlations of Kd for ammonia and oxygen is recommended. For the water chemistry with solid reagents, a diffusion model has been developed to calculate mass transfer on the basis of data on heat transfer in steam-generating tubes. The concentration of reagents near the wall is determined by both the turbulent transport of the liquid between the flow core and the near-wall layer and the coefficient of reagent distribution between the phases. Simple approximating correlations of distribution coefficients for Na3PO4, NaOH, and 90H Turb helamine are proposed. An approximate correlation between the hydraulic resistance coefficient Kh and the geometric parameter Kс of the FAC process has been established. The hydrodynamic fundamentals of the standard HRSG structural members have been studied in more detail than FAC. To estimate Kс, one can use the known value of Kh and the correlation between them. However, this correlation should be used with care since it has been obtained for certain conditions of unambiguity (i.e., specific construction material, water chemistry, flow history, etc.). Under other conditions, this correlation will change somewhat; therefore, it can only be used for rough estimation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Chexal, J. S. Horowitz, R. Jones, B. Dooley, and C. Wood, Flow-Accelerated Corrosion in Power Plants (EPRI, 1996). B. Chexal, J. S. Horowitz, R. Jones, B. Dooley, and C. Wood, Flow-Accelerated Corrosion in Power Plants (EPRI, 1996).
2.
Zurück zum Zitat J. M. Jevec, S. J. Klimas, P. King, and K. Fruzzetti, Multivariable Assessment of Flow Accelerated Corrosion and Steam Generator Fouling (EPRI, 2003). J. M. Jevec, S. J. Klimas, P. King, and K. Fruzzetti, Multivariable Assessment of Flow Accelerated Corrosion and Steam Generator Fouling (EPRI, 2003).
3.
Zurück zum Zitat J. Otakar, “Control of erosion/corrosion of steels in wet steam,” Power 129, 102–103 (1985). J. Otakar, “Control of erosion/corrosion of steels in wet steam,” Power 129, 102–103 (1985).
4.
Zurück zum Zitat J. Otakar, “Plant alert: Don’t let erosion/corrosion compromise safety,” Power, February (1996). http:// www.steamcycle.com/plant_alert.pdf J. Otakar, “Plant alert: Don’t let erosion/corrosion compromise safety,” Power, February (1996). http:// www.steamcycle.com/plant_alert.pdf
6.
Zurück zum Zitat Guidelines for Controlling Flow-Accelerated Corrosion in Fossil and Combined Cycle Plants. Final Report, 1008280 (EPRI, 2005). Guidelines for Controlling Flow-Accelerated Corrosion in Fossil and Combined Cycle Plants. Final Report, 1008280 (EPRI, 2005).
7.
Zurück zum Zitat W. Kastner and K. Riedle, “Empirisches Modell zur Berechnung von Materialabtragen durch Erosionskorrosion,” VGB Kraftwerkstech. 66, 1171–1178 (1986). W. Kastner and K. Riedle, “Empirisches Modell zur Berechnung von Materialabtragen durch Erosionskorrosion,” VGB Kraftwerkstech. 66, 1171–1178 (1986).
8.
Zurück zum Zitat J. Schroeder, “Heat recovery steam generator design related influences on flow accelerated corrosion,” in Proc. HRSG Conf. in Nooter/Eriksen, Fenton, MO,2010. J. Schroeder, “Heat recovery steam generator design related influences on flow accelerated corrosion,” in Proc. HRSG Conf. in Nooter/Eriksen, Fenton, MO,2010.
9.
Zurück zum Zitat H. Keller, “Erosioncorrosion an Nassdampfturbinen,” VGB Kraftwerktech. 54, 292–295 (1974). H. Keller, “Erosioncorrosion an Nassdampfturbinen,” VGB Kraftwerktech. 54, 292–295 (1974).
10.
Zurück zum Zitat Excel program for calculation of FAC (Flow Assisted Corrosion = Erosion Corrosion) on the basis of the publication of Kastner and Riedle (1986). http://www.studiekern-corrosie.nl/pdf/Lezingen/65%20FACCalculation%20 model%20engels.pdf Excel program for calculation of FAC (Flow Assisted Corrosion = Erosion Corrosion) on the basis of the publication of Kastner and Riedle (1986). http://​www.​studiekern-corrosie.​nl/​pdf/​Lezingen/​65%20FACCalculation%20 model%20engels.pdf
11.
Zurück zum Zitat G. V. Tomarov, A. V. Mikhailov, E. V. Velichko, and V. A. Budanov, “Extending the erosion-corrosion service life of the tube system of heat-recovery steam generators used as part of combined-cycle plants,” Therm. Eng. 57, 22–27 (2010).CrossRef G. V. Tomarov, A. V. Mikhailov, E. V. Velichko, and V. A. Budanov, “Extending the erosion-corrosion service life of the tube system of heat-recovery steam generators used as part of combined-cycle plants,” Therm. Eng. 57, 22–27 (2010).CrossRef
12.
Zurück zum Zitat V. I. Baranenko and A. A. Prosvirnov, System Requirements for Future Nuclear Power Plants and Factors of Erosion-Corrosion Wear (ProAtom, 2012) [in Russian]. http://www.proatom.ru/modules.php?file=article&name= News&sid=3552 V. I. Baranenko and A. A. Prosvirnov, System Requirements for Future Nuclear Power Plants and Factors of Erosion-Corrosion Wear (ProAtom, 2012) [in Russian]. http://​www.​proatom.​ru/​modules.​php?​file=​article&​name=​ News&sid=3552
14.
Zurück zum Zitat T. I. Petrova and F. V. Dyachenko, “A review of studies on the use of film-forming amines for corrective water treatment,” Presented at The Use of Film-Forming Amines in Power Generation, Sci.-Pract. Conf., Moscow, Nov. 10,2016. https://docplayer.ru/60241671-Obzor-issledovaniy-po-primeneniyu-plenkoobrazuyushchihaminov-dlya-korrekcionnoy-obrabotki-vody.html T. I. Petrova and F. V. Dyachenko, “A review of studies on the use of film-forming amines for corrective water treatment,” Presented at The Use of Film-Forming Amines in Power Generation, Sci.-Pract. Conf., Moscow, Nov. 10,2016. https://​docplayer.​ru/​60241671-Obzor-issledovaniy-po-primeneniyu-plenkoobrazuyush​chihaminov-dlya-korrekcionnoy-obrabotki-vody.​html
16.
Zurück zum Zitat V. I. Nikitin, I. I. Belyakov, and V. I. Breus, “Damage to steam-generating tubes of low-pressure circuit of drum-type heat recovery steam generator used in the PGU-450 combined-cycle unit at Severozapadnaya cogeneration plant,” Therm. Eng. 56, 124–128 (2009).CrossRef V. I. Nikitin, I. I. Belyakov, and V. I. Breus, “Damage to steam-generating tubes of low-pressure circuit of drum-type heat recovery steam generator used in the PGU-450 combined-cycle unit at Severozapadnaya cogeneration plant,” Therm. Eng. 56, 124–128 (2009).CrossRef
17.
Zurück zum Zitat M. A. Styrikovich, V. S. Polonsky, and G. V. Tsiklauri, Heat and Mass Transfer and Hydrodynamics in Two-Phase Flows in Nuclear Power Plants (Nauka, Moscow, 1982; Hemisphere, New York, 1986). M. A. Styrikovich, V. S. Polonsky, and G. V. Tsiklauri, Heat and Mass Transfer and Hydrodynamics in Two-Phase Flows in Nuclear Power Plants (Nauka, Moscow, 1982; Hemisphere, New York, 1986).
18.
Zurück zum Zitat VGB-S-010-T-00 (VGB-Standard). Feed Water, Boiler Water and Steam Quality for Power Plants/Industrial Plants, 3rd ed. (2011–2012). VGB-S-010-T-00 (VGB-Standard). Feed Water, Boiler Water and Steam Quality for Power Plants/Industrial Plants, 3rd ed. (2011–2012).
19.
Zurück zum Zitat V. S. Polonsky, I. L. Mostinskii, N. P. Afanas’ev, V. I. Zalkind, V. F. Krapivnyi, K. N. Proskuryakov, O. G. Stonik, and L. A. Shatenѐv, “Steam and gas abrasive cutters. Design basics, Prospects for use,” Preprint IVTAN No. 1–393 (High Temperature Inst., Russian Academy of Sciences, Moscow, 1996). V. S. Polonsky, I. L. Mostinskii, N. P. Afanas’ev, V. I. Zalkind, V. F. Krapivnyi, K. N. Proskuryakov, O. G. Stonik, and L. A. Shatenѐv, “Steam and gas abrasive cutters. Design basics, Prospects for use,” Preprint IVTAN No. 1–393 (High Temperature Inst., Russian Academy of Sciences, Moscow, 1996).
20.
Zurück zum Zitat O. M. Baldina, V. A. Lokshin, D. F. Peterson, I. E. Semenovker, and A. L. Shvarts, Hydraulic Calculation of Boiler Units (Normative Method) (Energiya, Moscow, 1978) [in Russian]. O. M. Baldina, V. A. Lokshin, D. F. Peterson, I. E. Semenovker, and A. L. Shvarts, Hydraulic Calculation of Boiler Units (Normative Method) (Energiya, Moscow, 1978) [in Russian].
21.
Zurück zum Zitat I. E. Idel’chik, Handbook of Hydraulic Resistance, Ed. by M. O. Shteinberg, 3rd ed. (Mashinostroenie, Moscow, 1992; CRC, Boca Raton, FL, 1994). I. E. Idel’chik, Handbook of Hydraulic Resistance, Ed. by M. O. Shteinberg, 3rd ed. (Mashinostroenie, Moscow, 1992; CRC, Boca Raton, FL, 1994).
22.
Zurück zum Zitat Cycle Chemistry Guidelines for Combined Cycle/Heat Recovery Steam Generators (HRSG’s), Electric Power Research Institute Report No. 1010438 (EPRI, 2006). Cycle Chemistry Guidelines for Combined Cycle/Heat Recovery Steam Generators (HRSG’s), Electric Power Research Institute Report No. 1010438 (EPRI, 2006).
23.
Zurück zum Zitat R. Turyna and V. Svarc, “Beitrag zur Ueberpruefung einiger Gleichungen der Dissoziationskoeffizienten von Ammoniak und Wasser sowie des Verteilungskoeffizienten von Ammoniak im Wasser-Damofkreislauf von Kemkraftwerken,” VGB Kraftwerkstech. 74, 408 (1994). R. Turyna and V. Svarc, “Beitrag zur Ueberpruefung einiger Gleichungen der Dissoziationskoeffizienten von Ammoniak und Wasser sowie des Verteilungskoeffizienten von Ammoniak im Wasser-Damofkreislauf von Kemkraftwerken,” VGB Kraftwerkstech. 74, 408 (1994).
24.
Zurück zum Zitat T. Kh. Margulova and O. I. Martynova, Water Chemistries Used at Thermal and Nuclear Power Plants, 2nd ed. (Vysshaya Shkola, Moscow, 1987) [in Russian]. T. Kh. Margulova and O. I. Martynova, Water Chemistries Used at Thermal and Nuclear Power Plants, 2nd ed. (Vysshaya Shkola, Moscow, 1987) [in Russian].
25.
Zurück zum Zitat V. N. Voronov and T. I. Petrova, Water Chemistries of Thermal and Nuclear Power Plants: Study Aid, Ed. by A. P. Pil’shchikov (Mosk. Energ. Inst., Moscow, 2009). V. N. Voronov and T. I. Petrova, Water Chemistries of Thermal and Nuclear Power Plants: Study Aid, Ed. by A. P. Pil’shchikov (Mosk. Energ. Inst., Moscow, 2009).
26.
Zurück zum Zitat IAPWS G7-04, Guideline on the Henry’s Constant and Vapor–Liquid Distribution Constant for Gases in H2O and D2O at High Temperatures (2004). IAPWS G7-04, Guideline on the Henry’s Constant and Vapor–Liquid Distribution Constant for Gases in H2O and D2O at High Temperatures (2004).
Metadaten
Titel
The Effect of Heat-and-Mass Transfer and Flow Hydrodynamics on the Flow Accelerated Corrosion Rate in Evaporators of Combined-Cycle Unit Heat-Recovery Steam Generators
verfasst von
V. S. Polonsky
D. A. Tarasov
D. A. Gorr
Publikationsdatum
01.06.2020
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 6/2020
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601520060105

Weitere Artikel der Ausgabe 6/2020

Thermal Engineering 6/2020 Zur Ausgabe

STEAM TURBINE, GAS TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Study into the Separation Ability of the New NRU MPEI Peripheral Sealing

STEAM BOILERS, POWER PLANT FUELS, BURNER UNITS, AND BOILER AUXILIARY EQUIPMENT

Cyclone-Bed Furnaces: Experimental Studies and Thermal Design

STEAM BOILERS, POWER PLANT FUELS, BURNER UNITS, AND BOILER AUXILIARY EQUIPMENT

Investigation of the Combustion Process of Solid Fuel in Furnaces with Direct-Flow Burners

    Premium Partner