Skip to main content

2014 | OriginalPaper | Buchkapitel

15. Specific Topics

verfasst von : Hans-Jörg G. Diersch

Erschienen in: FEFLOW

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The finite element solution of the governing flow, mass and heat transport equations as described in the preceding chapters requires the discretization of the equations to replace the continuous PDE’s with a system of simultaneous algebraic equations (cf. Chap.​ 8). The spatial discretization is accomplished by subdividing the study domain with its boundary into a number of nonoverlapping finite elements of different shapes, such as triangles, tetrahedra, bricks (see Fig. 8.6), forming the finite element mesh associated with a set of nodes and interpolation functions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Considering a superelement side of length L and move the midside node to the distance aL, where \(0 \leq a \leq \tfrac{1} {2}\) is a shifting factor, viz.,
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-642-38739-5_15/MediaObjects/209325_1_En_15_Un1_HTML.gif
the smallest element length Δ x of the graded element spacing obtained with the parabolic mapping is:
$$\displaystyle{\varDelta x =\varDelta \xi L[\varDelta \xi (\tfrac{1} {2} - a) + 2a -\tfrac{1} {2}]}$$
where Δ ξ > 0 is the given increment (15.3) of the superelement side subdivision. It results by taking the parabolic interpolation functions of Tab. G.1(b) of Appendix G with \(\xi = -1+\varDelta \xi\) for the second evaluation point. For \(a = \tfrac{1} {2}\) the standard equally graded spacing with \(\varDelta x = \tfrac{1} {2}\varDelta \xi L\) is given, while with the a midside node shift of \(a = \tfrac{1} {4}\) a left-sided densification with \(\varDelta x ={ \tfrac{1} {4}\varDelta \xi }^{2}L\) results. Since \(\varDelta \xi (\tfrac{1} {2} - a) + 2a -\tfrac{1} {2}\) must be positive, the following constraints are required:
$$\displaystyle{\begin{array}{rclll} a& >&\frac{1} {2}\Bigl (\frac{1-\varDelta \xi } {2-\varDelta \xi }\Bigr ) &\quad \mbox{ for} & \quad 0 \leq \varDelta \xi \leq 1 \\ \varDelta \xi & >&\frac{1-4a} {1-2a} &\quad \mbox{ for} & \quad 0 \leq a \leq \frac{1} {4} \end{array} }$$
We recognize that with decreasing Δ ξ → 0 the shift of the midside node must satisfy \(a > \tfrac{1} {4}\).
 
2
Boundary nodes \(\boldsymbol{x}_{i}\) (i = 1, 2, ) are created on each side of a superelement. Their distances depend on the desired element resolution. They can be equally distributed along the superelement side or can be densified locally by using a parabolic grading function:
$$\displaystyle{\boldsymbol{x}_{i} =\boldsymbol{ x}_{2} +\xi _{i}(k)[\boldsymbol{a} +\xi _{i}(k)\boldsymbol{b}],\quad (-5 \leq k \leq 5)}$$
with
$$\displaystyle{\boldsymbol{a} = \tfrac{1} {2}(\boldsymbol{x}_{3} -\boldsymbol{ x}_{1}),\quad \boldsymbol{b} = \tfrac{1} {2}(\boldsymbol{x}_{3} +\boldsymbol{ x}_{1}) -\boldsymbol{ x}_{2}}$$
$$\displaystyle{\xi _{i}(k) =\eta _{i} - s(k)(\eta _{i}^{2} - 1),\quad \eta _{ i} = -1 + (i - 1)\varDelta \eta,\quad s(k) = \tfrac{1} {4}\mathrm{sgn}(k)\sum _{j=1}^{\vert k\vert }{2}^{-j+1}}$$
where \(\boldsymbol{x}_{1}\), \(\boldsymbol{x}_{2}\) and \(\boldsymbol{x}_{3}\) are the coordinates of the left, middle and right nodes of a superelement side, respectively, k is a grading counter (for k = 0 there is no grading and the nodes become equally distributed, k > 0 leads to left-sided densification, k < 0 leads to a right-sided densification of boundary nodes) and \(\varDelta \eta = 2/(\mathrm{NS} + 1)\) is a local coordinate increment determined by the desired number of superelement side segmentation NS.
 
3
Alternatively, to find an appropriate energy expression for coupled variable-density flow, mass and heat transport in porous media, the internal Clausius-Duhem entropy production ρ Υ ≥ 0, (3.​125), can be utilized. It provides a physically consistent functional in which all relevant state variables of the nonlinearly coupled process in form of Darcy flux \(\boldsymbol{q}\), hydraulic head h, species mass C k and temperature T are present. A simplified version of (3.​125) yields
$$\displaystyle{\bar{\varUpsilon }(\boldsymbol{q},T,C_{k}) = T\,\rho \varUpsilon =\rho _{0}g\boldsymbol{q} \cdot (\boldsymbol{{K}}^{-1} \cdot \boldsymbol{ q}) + \frac{1} {T}\bigl (\nabla T \cdot (\boldsymbol{\varLambda }\cdot \nabla T)\bigr ) +\sum _{k} \frac{\partial \mu _{k}} {\partial C_{k}}\bigl (\nabla C_{k} \cdot (\boldsymbol{D}_{k} \cdot \nabla C_{k})\bigr ) \geq 0}$$
and the following entropy error norm appears suitable
$$\displaystyle{\Vert \boldsymbol{{e}\Vert }^{2} =\int _{\varOmega }\bar{\varUpsilon }(\boldsymbol{q} -\hat{\boldsymbol{ q}},T -\hat{ T},C_{ k} -\hat{ C}_{k})d\varOmega }$$
where \(\boldsymbol{q}\), C k , T are the exact solutions and \(\hat{\boldsymbol{q}}\), \(\hat{C}_{k}\), \(\hat{T}\) are the approximate finite element solutions. The Darcy flux \(\boldsymbol{q} =\boldsymbol{ q}(h,C_{k},T)\) or \(\hat{\boldsymbol{q}} =\hat{\boldsymbol{ q}}(\hat{h},\hat{C}_{k},\hat{T})\) takes the form of (11.​1).
 
4
Equivalently, for 2D finite elements the Newton iteration scheme results
$$\displaystyle{\begin{array}{rclcl} F_{1}{(\boldsymbol{\eta }}^{\tau +1}) & = & F_{1}{(\boldsymbol{\eta }}^{\tau }) + \frac{\partial F_{1}{(\boldsymbol{\eta }}^{\tau })} {{\partial \xi }^{\tau }} {(\xi }^{\tau +1} {-\xi }^{\tau }) + \frac{\partial F_{1}{(\boldsymbol{\eta }}^{\tau })} {{\partial \eta }^{\tau }} {(\eta }^{\tau +1} {-\eta }^{\tau }) - {x}^{e}& = & 0 \\ F_{2}{(\boldsymbol{\eta }}^{\tau +1}) & = & F_{2}{(\boldsymbol{\eta }}^{\tau }) + \frac{\partial F_{2}{(\boldsymbol{\eta }}^{\tau })} {{\partial \xi }^{\tau }} {(\xi }^{\tau +1} {-\xi }^{\tau }) + \frac{\partial F_{2}{(\boldsymbol{\eta }}^{\tau })} {{\partial \eta }^{\tau }} {(\eta }^{\tau +1} {-\eta }^{\tau }) - {y}^{e} & = & 0 \end{array} }$$
or
$$\displaystyle{\left (\begin{array}{cccc} a_{11} & a_{12}\\ a_{21 } & a_{22} \end{array} \right )\cdot \left (\begin{array}{cccc} { \varDelta \xi }^{\tau }\\ { \varDelta \eta }^{\tau } \end{array} \right ) = \left (\begin{array}{cccc} a_{13} \\ a_{23} \end{array} \right )}$$
and
$$\displaystyle{\begin{array}{rcl} { \varDelta \xi }^{\tau } & = & \frac{1} {\vert a\vert }\bigl (a_{13}a_{22} - a_{23}a_{12}\bigr ) \\ { \varDelta \eta }^{\tau } & = & \frac{1} {\vert a\vert }\bigl (a_{11}a_{23} - a_{21}a_{13}\bigr ) \\ \mbox{ with} & & \\ \vert a\vert & = &a_{ 11}a_{22} - a_{21}a_{12}\neq 0 \end{array} }$$
 
Literatur
16.
Zurück zum Zitat Babuška, I.: Reliability of computational mechanics. In: Whiteman, J. (ed.) The Mathematics of Finite Elements and Applications: Highlights 1993, pp. 25–44. Wiley, Chichester (1994) Babuška, I.: Reliability of computational mechanics. In: Whiteman, J. (ed.) The Mathematics of Finite Elements and Applications: Highlights 1993, pp. 25–44. Wiley, Chichester (1994)
24.
Zurück zum Zitat Bank, R., Sherman, A., Weiser, A.: Refinement algorithms and data structure for regular local mesh refinement. In: Steplemen, R., et al. (eds.) Scientific Computing, pp. 3–17. IMACS/North Holland, Brussels (1983) Bank, R., Sherman, A., Weiser, A.: Refinement algorithms and data structure for regular local mesh refinement. In: Steplemen, R., et al. (eds.) Scientific Computing, pp. 3–17. IMACS/North Holland, Brussels (1983)
50.
Zurück zum Zitat Bowyer, A.: Computing Dirichlet tesselations. Comput. J. 24(2), 162–166 (1981)CrossRef Bowyer, A.: Computing Dirichlet tesselations. Comput. J. 24(2), 162–166 (1981)CrossRef
64.
Zurück zum Zitat Burkhart, D., Hamann, B., Umlauf, G.: Adaptive and feature-preserving subdivision for high-quality tetrahedral meshes. Comput. Graph. Forum 29(1), 117–127 (2010)CrossRef Burkhart, D., Hamann, B., Umlauf, G.: Adaptive and feature-preserving subdivision for high-quality tetrahedral meshes. Comput. Graph. Forum 29(1), 117–127 (2010)CrossRef
99.
Zurück zum Zitat Cordes, C., Kinzelbach, W.: Continuous groundwater velocity fields and path lines in linear, bilinear, and trilinear finite elements. Water Resour. Res. 28(11), 2903–2911 (1992)CrossRef Cordes, C., Kinzelbach, W.: Continuous groundwater velocity fields and path lines in linear, bilinear, and trilinear finite elements. Water Resour. Res. 28(11), 2903–2911 (1992)CrossRef
154.
Zurück zum Zitat Elder, J.: Transient convection in a porous medium. J. Fluid Mech. 27(3), 609–623 (1967)CrossRef Elder, J.: Transient convection in a porous medium. J. Fluid Mech. 27(3), 609–623 (1967)CrossRef
155.
Zurück zum Zitat Engel, B., Navulur, K.: The role of geographical information systems in groundwater modeling (Chapter 21). In: Delleur, J. (ed.) The Handbook of Groundwater Engineering, pp. 21:1–16. CRC/Springer, Boca Raton (1999) Engel, B., Navulur, K.: The role of geographical information systems in groundwater modeling (Chapter 21). In: Delleur, J. (ed.) The Handbook of Groundwater Engineering, pp. 21:1–16. CRC/Springer, Boca Raton (1999)
165.
Zurück zum Zitat Fletcher, C.: Computational Techniques for Fluid Dynamics, vols. 1 and 2. Springer, New York (1988) Fletcher, C.: Computational Techniques for Fluid Dynamics, vols. 1 and 2. Springer, New York (1988)
169.
Zurück zum Zitat Franca, A., Haghighi, K.: Adaptive finite element analysis of transient thermal problems. Numer. Heat Transf. Part B 26(3), 273–292 (1994)CrossRef Franca, A., Haghighi, K.: Adaptive finite element analysis of transient thermal problems. Numer. Heat Transf. Part B 26(3), 273–292 (1994)CrossRef
188.
Zurück zum Zitat George, P.: Automatic Mesh Generation: Application to Finite Element Methods. Wiley, Chichester (1991) George, P.: Automatic Mesh Generation: Application to Finite Element Methods. Wiley, Chichester (1991)
222.
Zurück zum Zitat Hægland, H., Dahle, H., Eigestad, G., Lie, K.A., Aavatsmark, I.: Improved streamlines and time-of-flight for streamline simulation on irregular grids. Adv. Water Resour. 30(4), 1027–1045 (2007)CrossRef Hægland, H., Dahle, H., Eigestad, G., Lie, K.A., Aavatsmark, I.: Improved streamlines and time-of-flight for streamline simulation on irregular grids. Adv. Water Resour. 30(4), 1027–1045 (2007)CrossRef
263.
Zurück zum Zitat Houlding, S.: 3D Geoscience Modeling. Springer, Berlin/Heidelberg (1994)CrossRef Houlding, S.: 3D Geoscience Modeling. Springer, Berlin/Heidelberg (1994)CrossRef
294.
Zurück zum Zitat Jourde, H., Cornaton, F., Pistre, S., Bidaux, P.: Flow behavior in a dual fracture network. J. Hydrol. 266(1–2), 99–119 (2002)CrossRef Jourde, H., Cornaton, F., Pistre, S., Bidaux, P.: Flow behavior in a dual fracture network. J. Hydrol. 266(1–2), 99–119 (2002)CrossRef
314.
Zurück zum Zitat Knupp, P., Steinberg, S.: Fundamentals of Grid Generation. CRC, Boca Raton (1994) Knupp, P., Steinberg, S.: Fundamentals of Grid Generation. CRC, Boca Raton (1994)
347.
Zurück zum Zitat Lian, Y.Y., Hsu, K.H., Shao, Y.L., Lee, Y.M., Jeng, Y.W., Wu, J.S.: Parallel adaptive mesh-refining scheme on a three-dimensional unstructured tetrahedral mesh and its applications. Comput. Phys. Commun. 175(11–12), 721–737 (2006)CrossRef Lian, Y.Y., Hsu, K.H., Shao, Y.L., Lee, Y.M., Jeng, Y.W., Wu, J.S.: Parallel adaptive mesh-refining scheme on a three-dimensional unstructured tetrahedral mesh and its applications. Comput. Phys. Commun. 175(11–12), 721–737 (2006)CrossRef
353.
Zurück zum Zitat Löhner, R.: Applied CFD Techniques. Wiley, Chichester (2001) Löhner, R.: Applied CFD Techniques. Wiley, Chichester (2001)
372.
Zurück zum Zitat Merchant, M., Weatherill, N.: Adaptivity techniques for compressible inviscid flows. Comput. Methods Appl. Mech. Eng. 106(1–2), 83–106 (1993)CrossRef Merchant, M., Weatherill, N.: Adaptivity techniques for compressible inviscid flows. Comput. Methods Appl. Mech. Eng. 106(1–2), 83–106 (1993)CrossRef
402.
Zurück zum Zitat Oñate, E., Bugeda, G.: Mesh optimality criteria for adaptive finite element computations. In: Whiteman, J. (ed.) The Mathematics of Finite Elements and Applications – Highlights 1993, pp. 121–135. Wiley, Chichester (1994) Oñate, E., Bugeda, G.: Mesh optimality criteria for adaptive finite element computations. In: Whiteman, J. (ed.) The Mathematics of Finite Elements and Applications – Highlights 1993, pp. 121–135. Wiley, Chichester (1994)
419.
Zurück zum Zitat Pinder, G.: Groundwater Modeling Using Geographical Information Systems. Wiley, New York (2002) Pinder, G.: Groundwater Modeling Using Geographical Information Systems. Wiley, New York (2002)
424.
Zurück zum Zitat Pokrajac, D., Lazic, R.: An efficient algorithm for high accuracy particle tracking in finite elements. Adv. Water Resour. 25(4), 353–369 (2002)CrossRef Pokrajac, D., Lazic, R.: An efficient algorithm for high accuracy particle tracking in finite elements. Adv. Water Resour. 25(4), 353–369 (2002)CrossRef
425.
Zurück zum Zitat Pollock, D.: Semianalytical computation of path lines for finite-difference models. Groundwater 26(6), 743–750 (1988)CrossRef Pollock, D.: Semianalytical computation of path lines for finite-difference models. Groundwater 26(6), 743–750 (1988)CrossRef
430.
Zurück zum Zitat Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical Recipes in C. Cambridge University Press, Cambridge (1988) Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical Recipes in C. Cambridge University Press, Cambridge (1988)
433.
Zurück zum Zitat Rannacher, R., Bangerth, W.: Adaptive Finite Element Methods for Differential Equations. Birkhäuser, Basel (2003) Rannacher, R., Bangerth, W.: Adaptive Finite Element Methods for Differential Equations. Birkhäuser, Basel (2003)
434.
Zurück zum Zitat Raper, J.: Three Dimensional Applications in Geographic Information Systems. Taylor and Francis, London (1989) Raper, J.: Three Dimensional Applications in Geographic Information Systems. Taylor and Francis, London (1989)
455.
Zurück zum Zitat Sadek, E.: A scheme for the automatic generation of triangular finite elements. Int. J. Numer. Methods Eng. 15(12), 1813–1822 (1980)CrossRef Sadek, E.: A scheme for the automatic generation of triangular finite elements. Int. J. Numer. Methods Eng. 15(12), 1813–1822 (1980)CrossRef
501.
Zurück zum Zitat Suárez, J., Abad, P., Plaza, A., Padrón, M.: Computational aspects of the refinement of 3D tetrahedral meshes. J. Comput. Methods Sci. Eng. 5(4), 215–224 (2005) Suárez, J., Abad, P., Plaza, A., Padrón, M.: Computational aspects of the refinement of 3D tetrahedral meshes. J. Comput. Methods Sci. Eng. 5(4), 215–224 (2005)
514.
Zurück zum Zitat Thompson, J., Soni, B., Weatherill, N.: Handbook of Grid Generation. CRC, Boca Raton (1999) Thompson, J., Soni, B., Weatherill, N.: Handbook of Grid Generation. CRC, Boca Raton (1999)
545.
Zurück zum Zitat Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley/Teubner, New York/Stuttgart (1996) Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley/Teubner, New York/Stuttgart (1996)
557.
Zurück zum Zitat Watson, D.: Computing n-dimensional Delaunay tesselation with application to Voronoi polytopes. Comput. J. 24(2), 167–172 (1981)CrossRef Watson, D.: Computing n-dimensional Delaunay tesselation with application to Voronoi polytopes. Comput. J. 24(2), 167–172 (1981)CrossRef
587.
Zurück zum Zitat Zheng, C., Bennett, G.: Applied Contaminant Transport Modeling: Theory and Practice. Van Nostrand Reinhold, New York (1995) Zheng, C., Bennett, G.: Applied Contaminant Transport Modeling: Theory and Practice. Van Nostrand Reinhold, New York (1995)
590.
Zurück zum Zitat Zienkiewicz, O., Taylor, R.: The Finite Element Method. Volume 1: The Basis, 5th edn. Butterworth-Heinemann, Oxford (2000) Zienkiewicz, O., Taylor, R.: The Finite Element Method. Volume 1: The Basis, 5th edn. Butterworth-Heinemann, Oxford (2000)
593.
Zurück zum Zitat Zienkiewicz, O., Zhu, J.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24(2), 337–357 (1987)CrossRef Zienkiewicz, O., Zhu, J.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24(2), 337–357 (1987)CrossRef
594.
Zurück zum Zitat Zienkiewicz, O., Zhu, J.: The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int. J. Numer. Methods Eng. 33(7), 1331–1364 (1992) Zienkiewicz, O., Zhu, J.: The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int. J. Numer. Methods Eng. 33(7), 1331–1364 (1992)
Metadaten
Titel
Specific Topics
verfasst von
Hans-Jörg G. Diersch
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-38739-5_15