Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 3/2019

22.10.2018 | Original Article

SPECMAR: fast heart rate estimation from PPG signal using a modified spectral subtraction scheme with composite motion artifacts reference generation

verfasst von: Mohammad Tariqul Islam, Sk. Tanvir Ahmed, Celia Shahnaz, Shaikh Anowarul Fattah

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The task of heart rate estimation using photoplethysmographic (PPG) signal is challenging due to the presence of various motion artifacts in the recorded signals. In this paper, a fast algorithm for heart rate estimation based on modified SPEctral subtraction scheme utilizing Composite Motion Artifacts Reference generation (SPECMAR) is proposed using two-channel PPG and three-axis accelerometer signals. First, the preliminary noise reduction is obtained by filtering unwanted frequency components from the recorded signals. Next, a composite motion artifacts reference generation method is developed to be employed in the proposed SPECMAR algorithm for motion artifacts reduction. The heart rate is then computed from the noise and motion artifacts reduced PPG signal. Finally, a heart rate tracking algorithm is proposed considering neighboring estimates. The performance of the SPECMAR algorithm has been tested on publicly available PPG database. The average heart rate estimation error is found to be 2.09 BPM on 23 recordings. The Pearson correlation is 0.9907. Due to low computational complexity, the method is faster than the comparing methods. The low estimation error, smooth and fast heart rate tracking makes SPECMAR an ideal choice to be implemented in wearable devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Allen J (2007) Photoplethysmography and its application in clinical physiological measurement. Physiol Meas 28(3):R1CrossRefPubMed Allen J (2007) Photoplethysmography and its application in clinical physiological measurement. Physiol Meas 28(3):R1CrossRefPubMed
2.
Zurück zum Zitat Bland JM, Altman DG (1995) Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet 346(8982):1085–1087CrossRefPubMed Bland JM, Altman DG (1995) Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet 346(8982):1085–1087CrossRefPubMed
3.
Zurück zum Zitat Fu TH, Liu SH, Tang KT (2008) Heart rate extraction from photoplethysmogram waveform using wavelet multi-resolution analysis. J Med Biol Eng 28(4):229–232 Fu TH, Liu SH, Tang KT (2008) Heart rate extraction from photoplethysmogram waveform using wavelet multi-resolution analysis. J Med Biol Eng 28(4):229–232
4.
Zurück zum Zitat Gambarotta N, Aletti F, Baselli G, Ferrario M (2016) A review of methods for the signal quality assessment to improve reliability of heart rate and blood pressures derived parameters. Med Biol Eng Comput 54 (7):1025–1035CrossRefPubMed Gambarotta N, Aletti F, Baselli G, Ferrario M (2016) A review of methods for the signal quality assessment to improve reliability of heart rate and blood pressures derived parameters. Med Biol Eng Comput 54 (7):1025–1035CrossRefPubMed
5.
Zurück zum Zitat Golyandina N, Nekrutkin V, Zhigljavsky AA (2001) Analysis of time series structure: SSA and related techniques. Chapman and Hall/CRC, LondonCrossRef Golyandina N, Nekrutkin V, Zhigljavsky AA (2001) Analysis of time series structure: SSA and related techniques. Chapman and Hall/CRC, LondonCrossRef
6.
Zurück zum Zitat Islam MT, Zabir I, Ahamed ST, Yasar MT, Shahnaz C, Fattah SA (2017) A time-frequency domain approach of heart rate estimation from photoplethysmographic (PPG) signal. Biomed Signal Process Control 36:146–154CrossRef Islam MT, Zabir I, Ahamed ST, Yasar MT, Shahnaz C, Fattah SA (2017) A time-frequency domain approach of heart rate estimation from photoplethysmographic (PPG) signal. Biomed Signal Process Control 36:146–154CrossRef
7.
Zurück zum Zitat Islam MT, Ahmed ST, Zabir I, Shahnaz C, Fattah SA (2018) Cascade and parallel combination (CPC) of adaptive filters for estimating heart rate during intensive physical exercise from photoplethysmographic signal. Healthcare Technol Lett 5(1):18–24CrossRef Islam MT, Ahmed ST, Zabir I, Shahnaz C, Fattah SA (2018) Cascade and parallel combination (CPC) of adaptive filters for estimating heart rate during intensive physical exercise from photoplethysmographic signal. Healthcare Technol Lett 5(1):18–24CrossRef
8.
9.
Zurück zum Zitat Kim BS, Yoo SK (2006) Motion artifact reduction in photoplethysmography using independent component analysis. IEEE Trans Biomed Eng 53(3):566–568CrossRefPubMed Kim BS, Yoo SK (2006) Motion artifact reduction in photoplethysmography using independent component analysis. IEEE Trans Biomed Eng 53(3):566–568CrossRefPubMed
10.
Zurück zum Zitat Kyriacou P, Powell S, Langford R, Jones D (2002) Investigation of oesophageal photoplethysmographic signals and blood oxygen saturation measurements in cardiothoracic surgery patients. Physiol Meas 23(3):533CrossRefPubMed Kyriacou P, Powell S, Langford R, Jones D (2002) Investigation of oesophageal photoplethysmographic signals and blood oxygen saturation measurements in cardiothoracic surgery patients. Physiol Meas 23(3):533CrossRefPubMed
11.
Zurück zum Zitat Lakshminarasimha Murthy NK, Madhusudana PC, Suresha P, Periyasamy V, Ghosh PK (2015) Multiple spectral peak tracking for heart rate monitoring from photoplethysmography signal during intensive physical exercise. IEEE Signal Process Lett 22(12):2391–2395CrossRef Lakshminarasimha Murthy NK, Madhusudana PC, Suresha P, Periyasamy V, Ghosh PK (2015) Multiple spectral peak tracking for heart rate monitoring from photoplethysmography signal during intensive physical exercise. IEEE Signal Process Lett 22(12):2391–2395CrossRef
12.
Zurück zum Zitat McCombie DB, Reisner AT, Asada HH (2006) Adaptive blood pressure estimation from wearable PPG sensors using peripheral artery pulse wave velocity measurements and multi-channel blind identification of local arterial dynamics. IEEE, New York, pp 3521–3524 McCombie DB, Reisner AT, Asada HH (2006) Adaptive blood pressure estimation from wearable PPG sensors using peripheral artery pulse wave velocity measurements and multi-channel blind identification of local arterial dynamics. IEEE, New York, pp 3521–3524
13.
Zurück zum Zitat Periyasamy V, Pramanik M, Ghosh PK (2017) Review on heart-rate estimation from photoplethysmography and accelerometer signals during physical exercise. J Indian Inst Sci 97(3):313–324CrossRef Periyasamy V, Pramanik M, Ghosh PK (2017) Review on heart-rate estimation from photoplethysmography and accelerometer signals during physical exercise. J Indian Inst Sci 97(3):313–324CrossRef
14.
Zurück zum Zitat Seyedtabaii S, Seyedtabaii L (2008) Kalman filter based adaptive reduction of motion artifact from photoplethysmographic signal. World Academy of Science. Eng Technol 37:173–176 Seyedtabaii S, Seyedtabaii L (2008) Kalman filter based adaptive reduction of motion artifact from photoplethysmographic signal. World Academy of Science. Eng Technol 37:173–176
15.
Zurück zum Zitat Tamura T, Maeda Y (2018) Photoplethysmogram. In: Seamless Healthcare Monitoring. Springer, Berlin, pp 159–192 Tamura T, Maeda Y (2018) Photoplethysmogram. In: Seamless Healthcare Monitoring. Springer, Berlin, pp 159–192
16.
Zurück zum Zitat Tamura T, Maeda Y, Sekine M, Yoshida M (2014) Wearable photoplethysmographic sensors—past and present. Electronics 3(2):282–302CrossRef Tamura T, Maeda Y, Sekine M, Yoshida M (2014) Wearable photoplethysmographic sensors—past and present. Electronics 3(2):282–302CrossRef
17.
Zurück zum Zitat Temko A (2015) Estimation of heart rate from photoplethysmography during physical exercise using wiener filtering and the phase vocoder. In: 37th annual international conference of the IEEE engineering in medicine and biology society. IEEE, Milano, pp 1500–1503 Temko A (2015) Estimation of heart rate from photoplethysmography during physical exercise using wiener filtering and the phase vocoder. In: 37th annual international conference of the IEEE engineering in medicine and biology society. IEEE, Milano, pp 1500–1503
18.
Zurück zum Zitat Yousefi R, Nourani M, Ostadabbas S, Panahi I (2014) A motion-tolerant adaptive algorithm for wearable photoplethysmographic biosensors. IEEE J Biomed Health Inform 18(2):670–681CrossRefPubMed Yousefi R, Nourani M, Ostadabbas S, Panahi I (2014) A motion-tolerant adaptive algorithm for wearable photoplethysmographic biosensors. IEEE J Biomed Health Inform 18(2):670–681CrossRefPubMed
19.
Zurück zum Zitat Zhang Z (2015) Photoplethysmography-based heart rate monitoring in physical activities via joint sparse spectrum reconstruction. IEEE Trans Biomed Eng 62(8):1902–1910CrossRefPubMed Zhang Z (2015) Photoplethysmography-based heart rate monitoring in physical activities via joint sparse spectrum reconstruction. IEEE Trans Biomed Eng 62(8):1902–1910CrossRefPubMed
20.
Zurück zum Zitat Zhang Z, Pi Z, Liu B (2015) TROIKA: a general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Trans Biomed Eng 62(2):522–531CrossRefPubMed Zhang Z, Pi Z, Liu B (2015) TROIKA: a general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Trans Biomed Eng 62(2):522–531CrossRefPubMed
Metadaten
Titel
SPECMAR: fast heart rate estimation from PPG signal using a modified spectral subtraction scheme with composite motion artifacts reference generation
verfasst von
Mohammad Tariqul Islam
Sk. Tanvir Ahmed
Celia Shahnaz
Shaikh Anowarul Fattah
Publikationsdatum
22.10.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 3/2019
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-018-1909-x

Weitere Artikel der Ausgabe 3/2019

Medical & Biological Engineering & Computing 3/2019 Zur Ausgabe