Skip to main content
Erschienen in: Artificial Life and Robotics 2/2018

18.12.2017 | Original Article

Spike pattern recognition using artificial neuron and spike-timing-dependent plasticity implemented on a multi-core embedded platform

verfasst von: F. Grassia, T. Levi, E. Doukkali, T. Kohno

Erschienen in: Artificial Life and Robotics | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The objective of this work is to use a multi-core embedded platform as computing architectures for neural applications relevant to neuromorphic engineering: e.g., robotics, and artificial and spiking neural networks. Recently, it has been shown how spike-timing-dependent plasticity (STDP) can play a key role in pattern recognition. In particular, multiple repeating arbitrary spatio-temporal spike patterns hidden in spike trains can be robustly detected and learned by multiple neurons equipped with spike-timing-dependent plasticity listening to the incoming spike trains. This paper presents an implementation on a biological time scale of STDP algorithm to localize a repeating spatio-temporal spike patterns on a multi-core embedded platform.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS et al (2014) A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197):668–673CrossRef Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS et al (2014) A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197):668–673CrossRef
2.
Zurück zum Zitat Kohno T, Li J, Aihara K (2014) Silicon neuronal networks towards brain-morphic computers. Nonlinear Theory Appl IEICE 5(3):379–39CrossRef Kohno T, Li J, Aihara K (2014) Silicon neuronal networks towards brain-morphic computers. Nonlinear Theory Appl IEICE 5(3):379–39CrossRef
3.
Zurück zum Zitat Levi T, Lewis N, Saïghi S, Tomas J et al (2008) Neuromimetic integrated circuits. In: Iniewski K (ed) VLSI circuits for biomedical applications. Boston, pp 241–264 Levi T, Lewis N, Saïghi S, Tomas J et al (2008) Neuromimetic integrated circuits. In: Iniewski K (ed) VLSI circuits for biomedical applications. Boston, pp 241–264
5.
Zurück zum Zitat Le Masson G, Renaud-Le Masson S, Debay D, Bal T (2002) Feedback inhibition controls spike transfer in hybrid thalamic circuits. Nature 417(6891):854–858CrossRef Le Masson G, Renaud-Le Masson S, Debay D, Bal T (2002) Feedback inhibition controls spike transfer in hybrid thalamic circuits. Nature 417(6891):854–858CrossRef
6.
Zurück zum Zitat Grassia F, Buhry L, Lévi T, Tomas J et al (2011) Tunable neuromimetic integrated system for emulating cortical neuron models. Front Neurosci 5:134CrossRef Grassia F, Buhry L, Lévi T, Tomas J et al (2011) Tunable neuromimetic integrated system for emulating cortical neuron models. Front Neurosci 5:134CrossRef
7.
Zurück zum Zitat Grassia F, Lévi T, Tomas J, Renaud S, Saïghi S (2011) A neuromimetic spiking neural network for simulating cortical circuits. In: Information sciences and systems (CISS), 2011 45th annual conference on. IEEE, p 1–6 Grassia F, Lévi T, Tomas J, Renaud S, Saïghi S (2011) A neuromimetic spiking neural network for simulating cortical circuits. In: Information sciences and systems (CISS), 2011 45th annual conference on. IEEE, p 1–6
8.
Zurück zum Zitat Furber S, Brown A (2009) Biologically-inspired massively-parallel architectures-computing beyond a million processors. In application of concurrency to system design, ACSD’09. In: Ninth International Conference. IEEE, p 3–12 Furber S, Brown A (2009) Biologically-inspired massively-parallel architectures-computing beyond a million processors. In application of concurrency to system design, ACSD’09. In: Ninth International Conference. IEEE, p 3–12
10.
Zurück zum Zitat Masquelier T, Guyonneau R, Thorpe SJ (2008), Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PloS one 3(1):e1377CrossRef Masquelier T, Guyonneau R, Thorpe SJ (2008), Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PloS one 3(1):e1377CrossRef
11.
Zurück zum Zitat Masquelier T, Guyonneau R, Thorpe SJ (2009) Competitive STDP-based spike pattern learning. Neural Comput 21(5):1259–1276CrossRefMATH Masquelier T, Guyonneau R, Thorpe SJ (2009) Competitive STDP-based spike pattern learning. Neural Comput 21(5):1259–1276CrossRefMATH
12.
Zurück zum Zitat Gerstner W, Kistler WM (2002), Spiking neuron models. Cambridge University Press, CambridgeCrossRefMATH Gerstner W, Kistler WM (2002), Spiking neuron models. Cambridge University Press, CambridgeCrossRefMATH
13.
Zurück zum Zitat Abbott LF (1999) Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Res Bull 50(5–6):303–304CrossRef Abbott LF (1999) Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Res Bull 50(5–6):303–304CrossRef
14.
Zurück zum Zitat Brette R, Rudolph M, Carnevale T, Hines M et al (2007) Simulation of networks of spiking neurons: A review of tools and strategies. J Comput Neurosci 23:349–398MathSciNetCrossRef Brette R, Rudolph M, Carnevale T, Hines M et al (2007) Simulation of networks of spiking neurons: A review of tools and strategies. J Comput Neurosci 23:349–398MathSciNetCrossRef
Metadaten
Titel
Spike pattern recognition using artificial neuron and spike-timing-dependent plasticity implemented on a multi-core embedded platform
verfasst von
F. Grassia
T. Levi
E. Doukkali
T. Kohno
Publikationsdatum
18.12.2017
Verlag
Springer Japan
Erschienen in
Artificial Life and Robotics / Ausgabe 2/2018
Print ISSN: 1433-5298
Elektronische ISSN: 1614-7456
DOI
https://doi.org/10.1007/s10015-017-0421-y

Weitere Artikel der Ausgabe 2/2018

Artificial Life and Robotics 2/2018 Zur Ausgabe

Neuer Inhalt