Skip to main content

2015 | OriginalPaper | Buchkapitel

Spin-Based CMOS-Compatible Devices

verfasst von : Viktor Sverdlov, Siegfried Selberherr

Erschienen in: Large-Scale Scientific Computing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With CMOS feature size rapidly approaching scaling limits the electron spin attracts attention as an alternative degree of freedom for low-power non-volatile devices. Silicon is perfectly suited for spin-driven applications, because it is mostly composed of nuclei without spin and is characterized by weak spin-orbit interaction. Elliot-Yafet spin relaxation due to phonons’ mediated scattering is the main mechanism in bulk silicon at room temperature. Uniaxial stress dramatically reduces the spin relaxation, particularly in thin silicon films. Lifting the valley degeneracy completely in a controllable way by means of standard stress techniques represents a major breakthrough for spin-based devices. Despite impressive progress regarding spin injection, the larger than predicted signal amplitude is still heavily debated. In addition, the absence of a viable concept of spin manipulation in the channel by electrical means makes a practical realization of a device working similar to a MOSFET difficult. An experimental demonstration of such a spin field-effect transistor (SpinFET) is pending for 25 years now, which at present is a strong motivation for researchers to look into the subject. Commercially available CMOS compatible spin-transfer torque magnetic random access memory (MRAM) built on magnetic tunnel junctions possesses all properties characteristic to universal memory: fast operation, high density, and non-volatility. The critical current for magnetization switching and the thermal stability are the main issues to be addressed. A substantial reduction of the critical current density and a considerable increase of the thermal stability are achieved in structures with a recording layer between two vertically sandwiched layers, where the recording layer is composed of two parts in the same plane next to each other. MRAM can be used to build logic-in-memory architectures with non-volatile storage elements on top of CMOS logic circuits. Non-volatility and reduced interconnect losses guarantee low-power consumption. A novel concept for non-volatile logic-in-memory circuits utilizing the same MRAM cells to store and process information simultaneously is proposed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Appelbaum, I., Huang, B., Monsma, D.J.: Electronic measurement and control of spin transport in Silicon. Nature 447, 295–298 (2007)CrossRef Appelbaum, I., Huang, B., Monsma, D.J.: Electronic measurement and control of spin transport in Silicon. Nature 447, 295–298 (2007)CrossRef
2.
Zurück zum Zitat Huang, B., Monsma, D.J., Appelbaum, I.: Coherent spin transport through a 350 micron thick silicon wafer. Phys. Rev. Lett. 99, 177209 (2007)CrossRef Huang, B., Monsma, D.J., Appelbaum, I.: Coherent spin transport through a 350 micron thick silicon wafer. Phys. Rev. Lett. 99, 177209 (2007)CrossRef
3.
4.
Zurück zum Zitat Datta, S., Das, B.: Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990)CrossRef Datta, S., Das, B.: Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990)CrossRef
5.
Zurück zum Zitat Sugahara, S., Nitta, J.: Spin-transistor electronics: an overview and outlook. Proc. IEEE 98, 2124–2154 (2010)CrossRef Sugahara, S., Nitta, J.: Spin-transistor electronics: an overview and outlook. Proc. IEEE 98, 2124–2154 (2010)CrossRef
6.
Zurück zum Zitat Schmidt, G., Ferrand, D., Molenkamp, L.W., Filip, A.T., van Wees, B.J.: Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790–R4793 (2000)CrossRef Schmidt, G., Ferrand, D., Molenkamp, L.W., Filip, A.T., van Wees, B.J.: Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790–R4793 (2000)CrossRef
7.
Zurück zum Zitat Rashba, E.I.: Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, R16267–R16270 (2000)CrossRef Rashba, E.I.: Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, R16267–R16270 (2000)CrossRef
8.
Zurück zum Zitat Dash, S.P., Sharma, S., Patel, R.S., de Jong, M.P., Jansen, R.: Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491–494 (2009)CrossRef Dash, S.P., Sharma, S., Patel, R.S., de Jong, M.P., Jansen, R.: Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491–494 (2009)CrossRef
9.
Zurück zum Zitat Li, C., van’t Erve, O., Jonker, B.: Electrical injection and detection of spin accumulation in silicon at 500K with magnetic metal/silicon dioxide contacts. Nat. Commun. 2, 245 (2011)CrossRef Li, C., van’t Erve, O., Jonker, B.: Electrical injection and detection of spin accumulation in silicon at 500K with magnetic metal/silicon dioxide contacts. Nat. Commun. 2, 245 (2011)CrossRef
10.
Zurück zum Zitat Jansen, R., Deac, A.M., Saito, H., Yuasa, S.: Injection and detection of spin in a semiconductor by tunneling via interface states. Phys. Rev. B 85, 134420 (2012)CrossRef Jansen, R., Deac, A.M., Saito, H., Yuasa, S.: Injection and detection of spin in a semiconductor by tunneling via interface states. Phys. Rev. B 85, 134420 (2012)CrossRef
11.
Zurück zum Zitat Song, Y., Dery, H.: Magnetic-field-modulated resonant tunneling in ferromagnetic-insulator-nonmagnetic junctions. Phys. Rev. Lett. 113, 047205 (2014)CrossRef Song, Y., Dery, H.: Magnetic-field-modulated resonant tunneling in ferromagnetic-insulator-nonmagnetic junctions. Phys. Rev. Lett. 113, 047205 (2014)CrossRef
12.
Zurück zum Zitat Zutic, I., Fabian, J., Das Sarma, S.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)CrossRef Zutic, I., Fabian, J., Das Sarma, S.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)CrossRef
13.
Zurück zum Zitat Fabian, J., Matos-Abiaguea, A., Ertler, C., Stano, P., Zutic, I.: Semiconductor spintronics. Acta Phys. Slovaca 57, 565–907 (2007)CrossRef Fabian, J., Matos-Abiaguea, A., Ertler, C., Stano, P., Zutic, I.: Semiconductor spintronics. Acta Phys. Slovaca 57, 565–907 (2007)CrossRef
14.
Zurück zum Zitat Cheng, J.L., Wu, M.W., Fabian, J.: Theory of the spin relaxation of conduction electrons in silicon. Phys. Rev. Lett. 104, 016601 (2010)CrossRef Cheng, J.L., Wu, M.W., Fabian, J.: Theory of the spin relaxation of conduction electrons in silicon. Phys. Rev. Lett. 104, 016601 (2010)CrossRef
15.
Zurück zum Zitat Li, P., Dery, H.: Spin-orbit symmetries of conduction electrons in silicon. Phys. Rev. Lett. 107, 107203 (2011)CrossRef Li, P., Dery, H.: Spin-orbit symmetries of conduction electrons in silicon. Phys. Rev. Lett. 107, 107203 (2011)CrossRef
16.
Zurück zum Zitat Song, Y., Dery, H.: Analysis of phonon-induced spin relaxation processes in silicon. Phys. Rev. B 86, 085201 (2012)CrossRef Song, Y., Dery, H.: Analysis of phonon-induced spin relaxation processes in silicon. Phys. Rev. B 86, 085201 (2012)CrossRef
17.
Zurück zum Zitat Li, J., Appelbaum, I.: Modeling spin transport in electrostatically-gated lateral-channel silicon devices: role of interfacial spin relaxation. Phys. Rev. B 84, 165318 (2011)CrossRef Li, J., Appelbaum, I.: Modeling spin transport in electrostatically-gated lateral-channel silicon devices: role of interfacial spin relaxation. Phys. Rev. B 84, 165318 (2011)CrossRef
18.
Zurück zum Zitat Li, J., Appelbaum, I.: Lateral spin transport through bulk silicon. Appl. Phys. Lett. 100, 162408 (2012)CrossRef Li, J., Appelbaum, I.: Lateral spin transport through bulk silicon. Appl. Phys. Lett. 100, 162408 (2012)CrossRef
19.
Zurück zum Zitat Osintsev, D., Baumgartner, O., Stanojevic, Z., Sverdlov, V., Selberherr, S.: Subband splitting and surface roughness induced spin relaxation in (001) silicon SOI MOSFETs. Solid-State Electron. 90, 34–38 (2013)CrossRef Osintsev, D., Baumgartner, O., Stanojevic, Z., Sverdlov, V., Selberherr, S.: Subband splitting and surface roughness induced spin relaxation in (001) silicon SOI MOSFETs. Solid-State Electron. 90, 34–38 (2013)CrossRef
20.
Zurück zum Zitat Sverdlov, V.: Strain-Induced Effects in Advanced MOSFETs. Springer, Wien - New York (2011)CrossRef Sverdlov, V.: Strain-Induced Effects in Advanced MOSFETs. Springer, Wien - New York (2011)CrossRef
21.
Zurück zum Zitat Jancu, J.M., Girard, J.C., Nestoklon, M.O., Lemaître, A., Glas, F., Wang, Z.Z., Voisin, P.: STM images of subsurface Mn Atoms in GaAs: evidence of hybridization of surface and impurity states. Phys. Rev. Lett. 101, 196801 (2008)CrossRef Jancu, J.M., Girard, J.C., Nestoklon, M.O., Lemaître, A., Glas, F., Wang, Z.Z., Voisin, P.: STM images of subsurface Mn Atoms in GaAs: evidence of hybridization of surface and impurity states. Phys. Rev. Lett. 101, 196801 (2008)CrossRef
22.
Zurück zum Zitat Prada, M., Klimeck, G., Joynt, R.: Spin-orbit splittings in Si/SiGe quantum wells: from ideal Si membranes to realistic heterostructures. New J. Phys. 13, 013009 (2011)CrossRef Prada, M., Klimeck, G., Joynt, R.: Spin-orbit splittings in Si/SiGe quantum wells: from ideal Si membranes to realistic heterostructures. New J. Phys. 13, 013009 (2011)CrossRef
23.
Zurück zum Zitat Wilamowski, Z., Jantsch, W.: Suppression of spin relaxation of conduction electrons by cyclotron motion. Phys. Rev. B 69, 035328 (2004)CrossRef Wilamowski, Z., Jantsch, W.: Suppression of spin relaxation of conduction electrons by cyclotron motion. Phys. Rev. B 69, 035328 (2004)CrossRef
24.
Zurück zum Zitat Osintsev, D., Sverdlov, V., Stanojevi\(\grave{\rm c}\), Z., Makarov, A., Selberherr, S.: Temperature dependence of the transport properties of spin field-effect transistors built with InAs and Si channels. Solid-State Electron. 71, 25–29 (2012) Osintsev, D., Sverdlov, V., Stanojevi\(\grave{\rm c}\), Z., Makarov, A., Selberherr, S.: Temperature dependence of the transport properties of spin field-effect transistors built with InAs and Si channels. Solid-State Electron. 71, 25–29 (2012)
25.
Zurück zum Zitat Slonczewski, J.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996)CrossRef Slonczewski, J.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996)CrossRef
26.
Zurück zum Zitat Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)CrossRef Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)CrossRef
27.
Zurück zum Zitat Makarov, A., Sverdlov, V., Osintsev, D., Selberherr, S.: Reduction of switching time in pentalayer magnetic tunnel junctions with a composite-free layer. Phys. Status Solidi - Rapid Res. Lett. 5, 420–422 (2011)CrossRef Makarov, A., Sverdlov, V., Osintsev, D., Selberherr, S.: Reduction of switching time in pentalayer magnetic tunnel junctions with a composite-free layer. Phys. Status Solidi - Rapid Res. Lett. 5, 420–422 (2011)CrossRef
28.
Zurück zum Zitat Makarov, A., Sverdlov, V., Selberherr, S.: Magnetic tunnel junctions with a composite free layer: a new concept for future universal memory. In: Luryi, S., Xu, J., Zaslavsky, A. (eds.) Future Trends in Microelectronics, pp. 93–101. Wiley, New York (2013)CrossRef Makarov, A., Sverdlov, V., Selberherr, S.: Magnetic tunnel junctions with a composite free layer: a new concept for future universal memory. In: Luryi, S., Xu, J., Zaslavsky, A. (eds.) Future Trends in Microelectronics, pp. 93–101. Wiley, New York (2013)CrossRef
29.
Zurück zum Zitat Makarov, A.: Modeling of emerging resistive switching based memory cells. Dissertation, Institute for Microelectronics, TU Wien (2014) Makarov, A.: Modeling of emerging resistive switching based memory cells. Dissertation, Institute for Microelectronics, TU Wien (2014)
30.
Zurück zum Zitat Endoh, T.: STT-MRAM technology and its NV-logic applications for ultimate power management. In: 2014 CMOS Emerging Technologies Research (CMOSETR), p. 14 (2014) Endoh, T.: STT-MRAM technology and its NV-logic applications for ultimate power management. In: 2014 CMOS Emerging Technologies Research (CMOSETR), p. 14 (2014)
31.
Zurück zum Zitat Natsui, M., Suzuki, D., Sakimura, N., Nebashi, R., Tsuji, Y., Morioka, A., Sugibayashi, T., Miura, S., Honjo, H., Kinoshita, K., Ikeda, S., Endoh, T., Ohno, H., Hanyu, T.: Nonvolatile logic-in-memory array processor in 90 nm MTJ/MOS achieving 75% leakage reduction using cycle-based power gating. In: 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 194–195 (2013) Natsui, M., Suzuki, D., Sakimura, N., Nebashi, R., Tsuji, Y., Morioka, A., Sugibayashi, T., Miura, S., Honjo, H., Kinoshita, K., Ikeda, S., Endoh, T., Ohno, H., Hanyu, T.: Nonvolatile logic-in-memory array processor in 90 nm MTJ/MOS achieving 75% leakage reduction using cycle-based power gating. In: 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 194–195 (2013)
32.
Zurück zum Zitat Lyle, A., Harms, J., Patil, S., Yao, X., Lilja, D.J., Wang, J.P.: Direct communication between magnetic tunnel junctions for nonvolatile logic fan-out architecture. Appl. Phys. Lett. 97, 152504 (2010)CrossRef Lyle, A., Harms, J., Patil, S., Yao, X., Lilja, D.J., Wang, J.P.: Direct communication between magnetic tunnel junctions for nonvolatile logic fan-out architecture. Appl. Phys. Lett. 97, 152504 (2010)CrossRef
33.
Zurück zum Zitat Lyle, A., Patil, S., Harms, J., Glass, B., Yao, X., Lilja, D., Wang, J.: Magnetic tunnel junction logic architecture for realization of simultaneous computation and communication. IEEE Trans. Magn. 47, 2970–2973 (2011)CrossRef Lyle, A., Patil, S., Harms, J., Glass, B., Yao, X., Lilja, D., Wang, J.: Magnetic tunnel junction logic architecture for realization of simultaneous computation and communication. IEEE Trans. Magn. 47, 2970–2973 (2011)CrossRef
34.
Zurück zum Zitat Mahmoudi, H., Windbacher, T., Sverdlov, V., Selberherr, S.: Implication logic gates using spin-transfer-torque-operated magnetic tunnel junctions for intrinsic logic-in-memory. Solid-State Electron. 84, 191–197 (2013)CrossRef Mahmoudi, H., Windbacher, T., Sverdlov, V., Selberherr, S.: Implication logic gates using spin-transfer-torque-operated magnetic tunnel junctions for intrinsic logic-in-memory. Solid-State Electron. 84, 191–197 (2013)CrossRef
35.
Zurück zum Zitat Borghetti, J., Snider, G., Kuekes, P., Yang, J., Stewart, D., Williams, R.: Memristive switches enable stateful logic operations via material implication. Nature 464, 873–876 (2010)CrossRef Borghetti, J., Snider, G., Kuekes, P., Yang, J., Stewart, D., Williams, R.: Memristive switches enable stateful logic operations via material implication. Nature 464, 873–876 (2010)CrossRef
36.
Zurück zum Zitat Mahmoudi, H., Windbacher, T., Sverdlov, V., Selberherr, S.: Reliability analysis and comparison of implication and reprogrammable logic gates in magnetic tunnel junction logic circuits. IEEE Trans. Magn. 49, 5620–5628 (2013)CrossRef Mahmoudi, H., Windbacher, T., Sverdlov, V., Selberherr, S.: Reliability analysis and comparison of implication and reprogrammable logic gates in magnetic tunnel junction logic circuits. IEEE Trans. Magn. 49, 5620–5628 (2013)CrossRef
Metadaten
Titel
Spin-Based CMOS-Compatible Devices
verfasst von
Viktor Sverdlov
Siegfried Selberherr
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-26520-9_4

Premium Partner