Skip to main content

2017 | OriginalPaper | Buchkapitel

14. Spray Forming of Novel Materials

Bulk Processing of Glass-Forming Alloys by Spray Deposition

verfasst von : Claudemiro Bolfarini, Vikas Chandra Srivastava

Erschienen in: Metal Sprays and Spray Deposition

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spray forming (SF) can be classified as a three-stage manufacturing process where liquid is disintegrated into a spray of small droplets, droplets solidify in the spray under a relatively rapid solidification condition during their flight and finally ends as the spray deposit builds up on a substrate, with the remaining liquid/semi-solid droplets solidifying at considerably slower rates. Due to a high cooling rate experienced during the atomization and the special conditions of deposit build up, with incoming droplets dynamically refining the solidifying material, as-sprayed deposits typically display a fine-scale microstructure, which may also exhibit some extended solid solubility and metastable phases. In the last few decades, a number of new materials’ classes and process routes have been developed. The world inclination towards the development of newer materials to cater to the presently stringent requirements has led to these innovations. Among them, very promising materials are the amorphous alloys and metallic glasses that show high strength as well as stiffness far above the conventional material classes of similar compositions. Despite such incremental developments, a paradigm shift has been observed in the design of new alloys with low cost alloying elements such as iron, aluminium and magnesium, instead of the costly Pd-, Zr- and La-alloy systems, and in the development of viable processing routes. However, the lower GFA of many of the alloys poses challenge on the process selection and modification. A few research works have demonstrated the development of bulk amorphous, nanocrystalline or a combination of amorphous-nanocrystalline-crystalline materials by spray forming. This chapter describes the results reported so far on spray forming of aluminum- and iron-based alloys, whose compositions are derived from rapid solidification studies aimed at obtaining amorphous structures. Due to the unique effect of the combinations of various process parameters, the processed aluminium-based glass-forming alloys show the formation of amorphous phase throughout the deposit of the Al-based alloy at high Gas to Metal ratio. This is generally not observed in the Fe-based alloys. However, some iron-based compositions displaying the highest glass-forming ability showed a high volume fraction of amorphous phase up to 4 mm thickness of the deposit. A similar value is obtained for this class of material when processed by copper mold casting. The present review, therefore, is an attempt to look into the alloy systems, their glass formability and the efficacy of spray forming in particular, to produce bulk metallic amorphous materials. The chapter also attempts to bring out the prevailing mechanisms during the development of amorphous phase in the bulk deposits, and in light of the process characteristics points out directions for future developments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Inoue, A., Ohtera, K., Kita, K., & Masumoto, T. (1988). Japanese Journal of Applied Physics, 27, L2248.CrossRef Inoue, A., Ohtera, K., Kita, K., & Masumoto, T. (1988). Japanese Journal of Applied Physics, 27, L2248.CrossRef
3.
4.
Zurück zum Zitat Johnson, W. L. (1999). Materials Research Society Symposium Proceedings, 554, 311–339.CrossRef Johnson, W. L. (1999). Materials Research Society Symposium Proceedings, 554, 311–339.CrossRef
5.
Zurück zum Zitat Turnbull, D. (1961). Transactions of AIME, 221, 422. Turnbull, D. (1961). Transactions of AIME, 221, 422.
6.
Zurück zum Zitat Chen, H. S., & Turnbull, D. (1968). The Journal of Chemical Physics, 48, 2560.CrossRef Chen, H. S., & Turnbull, D. (1968). The Journal of Chemical Physics, 48, 2560.CrossRef
7.
Zurück zum Zitat Turnbull, D., & Fisher, J. C. (1949). The Journal of Chemical Physics, 17, 71.CrossRef Turnbull, D., & Fisher, J. C. (1949). The Journal of Chemical Physics, 17, 71.CrossRef
9.
Zurück zum Zitat Corner, R. D., et al. (2000). International Journal of Impact Engineering, 24, 435.CrossRef Corner, R. D., et al. (2000). International Journal of Impact Engineering, 24, 435.CrossRef
10.
Zurück zum Zitat Ashby, M. F. (1992). Materials Selection in materials design (pp. 86–91). Oxford: Pergamon Press. Ashby, M. F. (1992). Materials Selection in materials design (pp. 86–91). Oxford: Pergamon Press.
11.
Zurück zum Zitat Johnson, W. L. (1996). Materials Science Forum, 225–227, 47. Johnson, W. L. (1996). Materials Science Forum, 225–227, 47.
12.
Zurück zum Zitat Salimon, A. I., et al. (2004). Materials Science and Engineering A, 375–377, 385–388.CrossRef Salimon, A. I., et al. (2004). Materials Science and Engineering A, 375–377, 385–388.CrossRef
13.
Zurück zum Zitat Schroers, J., Nguyen, T., O’Keeffe, S., & Desai, A. (2007). Materials Science and Engineering A, 449–451, 898–902.CrossRef Schroers, J., Nguyen, T., O’Keeffe, S., & Desai, A. (2007). Materials Science and Engineering A, 449–451, 898–902.CrossRef
15.
Zurück zum Zitat Wesseiling, P., Nouri, A. S., & Lewandoski, J. J. (2005) In TMS Annual Meeting, San Francisco CA, February 16, 2005. Wesseiling, P., Nouri, A. S., & Lewandoski, J. J. (2005) In TMS Annual Meeting, San Francisco CA, February 16, 2005.
17.
20.
Zurück zum Zitat Fan, G. J., Choo, H., & Liaw, P. K. (2007). Journal of Non-Crystalline Solids, 353, 102.CrossRef Fan, G. J., Choo, H., & Liaw, P. K. (2007). Journal of Non-Crystalline Solids, 353, 102.CrossRef
21.
Zurück zum Zitat Jindal, V., Srivastava, V. C., & Uhlenwinkel, V. (2009). Journal of Non-Crystalline Solids, 355, 1552–1555.CrossRef Jindal, V., Srivastava, V. C., & Uhlenwinkel, V. (2009). Journal of Non-Crystalline Solids, 355, 1552–1555.CrossRef
22.
Zurück zum Zitat Senkov, O. N., Senkov, S. V., Scott, J. M., & Miracle, D. M. (2005). Materials Science and Engineering A, 393, 12–21.CrossRef Senkov, O. N., Senkov, S. V., Scott, J. M., & Miracle, D. M. (2005). Materials Science and Engineering A, 393, 12–21.CrossRef
23.
Zurück zum Zitat Oguchi, M., Inoue, A., Yamaguchi, H., & Masumoto, T. J. (1991). Journal of Materials Science Letters, 10, 289–291.CrossRef Oguchi, M., Inoue, A., Yamaguchi, H., & Masumoto, T. J. (1991). Journal of Materials Science Letters, 10, 289–291.CrossRef
24.
Zurück zum Zitat Afonso, C. R. M., Bolfarini, C., Kiminami, C. S., Bassim, N. D., Kaufman, M. J., Amateau, M. F., Eden, T. J., & Galbraith, J. M. (2001). Journal of Non-Crystalline Solids, 284, 134–138.CrossRef Afonso, C. R. M., Bolfarini, C., Kiminami, C. S., Bassim, N. D., Kaufman, M. J., Amateau, M. F., Eden, T. J., & Galbraith, J. M. (2001). Journal of Non-Crystalline Solids, 284, 134–138.CrossRef
25.
Zurück zum Zitat Afonso, C. R. M., Bolfarini, C., Kiminami, C. S., Bassim, N. D., Kaufman, M. J., Amateau, M. F., Eden, T. J., & Galbraith, J. M. (2001). Scripta Materialia, 44, 1625–1628.CrossRef Afonso, C. R. M., Bolfarini, C., Kiminami, C. S., Bassim, N. D., Kaufman, M. J., Amateau, M. F., Eden, T. J., & Galbraith, J. M. (2001). Scripta Materialia, 44, 1625–1628.CrossRef
26.
Zurück zum Zitat Guo, M. L. T., Tsao, C. Y. A., Huang, J. C., & Jang, J. S. C. (2005). Materials Science and Engineering A, 404, 49–56.CrossRef Guo, M. L. T., Tsao, C. Y. A., Huang, J. C., & Jang, J. S. C. (2005). Materials Science and Engineering A, 404, 49–56.CrossRef
27.
Zurück zum Zitat Golumbfskie, W. J., Amateau, M. F., Eden, T. J., Wang, J. G., & Liu, Z. K. (2003). Acta Materialia, 51, 5199–5209.CrossRef Golumbfskie, W. J., Amateau, M. F., Eden, T. J., Wang, J. G., & Liu, Z. K. (2003). Acta Materialia, 51, 5199–5209.CrossRef
28.
Zurück zum Zitat Srivastava, V. C., Surreddi, K. B., Uhlenwinkel, V., Schulz, A., Eckert, J., & Zoch, H.-W. (2009). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 40, 450–461.CrossRef Srivastava, V. C., Surreddi, K. B., Uhlenwinkel, V., Schulz, A., Eckert, J., & Zoch, H.-W. (2009). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 40, 450–461.CrossRef
29.
Zurück zum Zitat Afonso, C. R. M., Bolfarini, C., Botta Filho, W. J., & Kiminami, C. S. (2007). Materials Science and Engineering A, 449–451, 884–889.CrossRef Afonso, C. R. M., Bolfarini, C., Botta Filho, W. J., & Kiminami, C. S. (2007). Materials Science and Engineering A, 449–451, 884–889.CrossRef
30.
Zurück zum Zitat Afonso, C. R. M., Bolfarini, C., Botta Filho, W. J., & Kiminami, C. S. (2004). Materials Science and Engineering A, 375–377, 571–576.CrossRef Afonso, C. R. M., Bolfarini, C., Botta Filho, W. J., & Kiminami, C. S. (2004). Materials Science and Engineering A, 375–377, 571–576.CrossRef
31.
Zurück zum Zitat Srivastava, V. C., Surreddi, K. B., Scudino, S., Schowalter, M., Uhlenwinkel, V., Schulz, A., Eckert, J., Rosenauer, A., & Zoch, H.-W. (2010). Materials Science and Engineering A, 527, 2747–2758.CrossRef Srivastava, V. C., Surreddi, K. B., Scudino, S., Schowalter, M., Uhlenwinkel, V., Schulz, A., Eckert, J., Rosenauer, A., & Zoch, H.-W. (2010). Materials Science and Engineering A, 527, 2747–2758.CrossRef
32.
Zurück zum Zitat Srivastava, V. C., Surreddi, K. B., Scudino, S., Schowalter, M., Uhlenwinkel, V., Schulz, A., Eckert, J., Rosenauer, A., & Zoch, H.-W. (2013). Journal of Alloys and Compounds, 578, 471–480.CrossRef Srivastava, V. C., Surreddi, K. B., Scudino, S., Schowalter, M., Uhlenwinkel, V., Schulz, A., Eckert, J., Rosenauer, A., & Zoch, H.-W. (2013). Journal of Alloys and Compounds, 578, 471–480.CrossRef
33.
Zurück zum Zitat Kawamura, Y., Mano, H., & Inoue, A. (2001). Scripta Materialia, 44, 1599–1604.CrossRef Kawamura, Y., Mano, H., & Inoue, A. (2001). Scripta Materialia, 44, 1599–1604.CrossRef
34.
Zurück zum Zitat Zhong, Z. C., Jiang, X. Y., & Greer, A. L. (1997). Materials Science and Engineering A, 226–228, 531–535.CrossRef Zhong, Z. C., Jiang, X. Y., & Greer, A. L. (1997). Materials Science and Engineering A, 226–228, 531–535.CrossRef
35.
Zurück zum Zitat Hofmann, D. C., Suh, J. Y., Wiest, A., Duan, G., Lind, M. L., Demetriou, M. D., et al. (2008). Nature, 451, 1085–1089.CrossRef Hofmann, D. C., Suh, J. Y., Wiest, A., Duan, G., Lind, M. L., Demetriou, M. D., et al. (2008). Nature, 451, 1085–1089.CrossRef
36.
Zurück zum Zitat Hofmann, D. C., Duan, G., & Johnson, W. L. (2006). Scripta Materialia, 54, 1117–1122.CrossRef Hofmann, D. C., Duan, G., & Johnson, W. L. (2006). Scripta Materialia, 54, 1117–1122.CrossRef
37.
Zurück zum Zitat Das, J., Tang, M. B., Kim, K. B., Theissmann, R., Baier, F., Wang, W. H., et al. (2005). Physical Review Letters, 94, 205501.CrossRef Das, J., Tang, M. B., Kim, K. B., Theissmann, R., Baier, F., Wang, W. H., et al. (2005). Physical Review Letters, 94, 205501.CrossRef
38.
Zurück zum Zitat Zhuo, L., Yang, B., Wang, H., & Zhang, T. (2011). Journal of Alloys and Compounds, 509, L169–L173.CrossRef Zhuo, L., Yang, B., Wang, H., & Zhang, T. (2011). Journal of Alloys and Compounds, 509, L169–L173.CrossRef
39.
Zurück zum Zitat Catto, F. L., Yonamine, T., Kiminami, C. S., Afonso, C. R. M., Botta, W. J., & Bolfarini, C. (2011). Journal of Alloys and Compounds, 509, S148–S154.CrossRef Catto, F. L., Yonamine, T., Kiminami, C. S., Afonso, C. R. M., Botta, W. J., & Bolfarini, C. (2011). Journal of Alloys and Compounds, 509, S148–S154.CrossRef
40.
Zurück zum Zitat Meyer, C., Ellendt, N., Srivastava, V. C., & Uhlenwinkel, V. (2012). International Journal of Materials Research, 103, 1090–1095.CrossRef Meyer, C., Ellendt, N., Srivastava, V. C., & Uhlenwinkel, V. (2012). International Journal of Materials Research, 103, 1090–1095.CrossRef
41.
42.
Zurück zum Zitat Inoue, A., Zhang, T., & Takeuchi, A. (1998). Materials Science Forum, 269-272, 855.CrossRef Inoue, A., Zhang, T., & Takeuchi, A. (1998). Materials Science Forum, 269-272, 855.CrossRef
43.
45.
46.
Zurück zum Zitat Mukherjee, S., Zhou, Z., Schroers, J., Johnson, W. L., & Rhim, W. K. (2004). Applied Physics Letters, 84(24), 5010–5012.CrossRef Mukherjee, S., Zhou, Z., Schroers, J., Johnson, W. L., & Rhim, W. K. (2004). Applied Physics Letters, 84(24), 5010–5012.CrossRef
47.
Zurück zum Zitat Loefler, J. F., Schroers, J., & Johnson, W. L. (2000). Aplied Physics Letters, 77(5), 681–683.CrossRef Loefler, J. F., Schroers, J., & Johnson, W. L. (2000). Aplied Physics Letters, 77(5), 681–683.CrossRef
48.
Zurück zum Zitat Inoue, A. (1995). High strength bulk amorphous alloys with low critical cooling rates: Overview. JIM Materials Transactions, JIM, 36(7), 866–875.CrossRef Inoue, A. (1995). High strength bulk amorphous alloys with low critical cooling rates: Overview. JIM Materials Transactions, JIM, 36(7), 866–875.CrossRef
49.
Zurück zum Zitat Suryanarayana, C. (1999). Non-equilibrium processing of materials [M] (pp. 96–99). New York: Elsevier Science. Suryanarayana, C. (1999). Non-equilibrium processing of materials [M] (pp. 96–99). New York: Elsevier Science.
50.
Zurück zum Zitat Pariona, M. M., Bolfarini, C., dos Santos, R. J., & Kiminami, C. S. (2000). Journal of Materials Processing Technology, 102, 221–229.CrossRef Pariona, M. M., Bolfarini, C., dos Santos, R. J., & Kiminami, C. S. (2000). Journal of Materials Processing Technology, 102, 221–229.CrossRef
51.
Zurück zum Zitat Donald, I.W., & Davies, H.A. (1978). Prediction of glass forming ability for metallic systems. Journal of Non-Crystalline Solids, 30(8), 77–85. Donald, I.W., & Davies, H.A. (1978). Prediction of glass forming ability for metallic systems. Journal of Non-Crystalline Solids, 30(8), 77–85.
52.
Zurück zum Zitat Turnbull, D. (1969). Under what conditions a glass can be formed? Contemporary Physics, 10, 473–488. Turnbull, D. (1969). Under what conditions a glass can be formed? Contemporary Physics, 10, 473–488.
53.
Zurück zum Zitat Ma, H., Hi, L. L., Xu, J., Li, Y., & Ma, E. (2005). Discovering inch-diameter metallic glasses in three-dimensional composition space. Journal of Applied Physics Letters, 87, 181915.CrossRef Ma, H., Hi, L. L., Xu, J., Li, Y., & Ma, E. (2005). Discovering inch-diameter metallic glasses in three-dimensional composition space. Journal of Applied Physics Letters, 87, 181915.CrossRef
54.
Zurück zum Zitat Cheney, J., & Vecchino, K. (2007). Prediction of glass-forming compositions using liquidus temperature calculations. Materials Science and Engineering: A, 471, 135–143.CrossRef Cheney, J., & Vecchino, K. (2007). Prediction of glass-forming compositions using liquidus temperature calculations. Materials Science and Engineering: A, 471, 135–143.CrossRef
55.
Zurück zum Zitat Egami, T., et al. (2010). Why metallic glasses form and why they fail? In WPI Advanced Institute for Materials Research:WPI-AIMR Annual Workshop. Tohoku University. Egami, T., et al. (2010). Why metallic glasses form and why they fail? In WPI Advanced Institute for Materials Research:WPI-AIMR Annual Workshop. Tohoku University.
57.
Zurück zum Zitat Miedema, A. R., Boom, R., & De Boer, M. R. (1975). On the heat offormation of solid alloys. Journal of the Less-Common Metals, 41, 283–298.CrossRef Miedema, A. R., Boom, R., & De Boer, M. R. (1975). On the heat offormation of solid alloys. Journal of the Less-Common Metals, 41, 283–298.CrossRef
58.
Zurück zum Zitat Boom, R., De Boer, M. R., & Miedema, A. R. (1976). On the heat of mixingof liquid alloys. Journal of the Less-Common Metals, 45, 237–245.CrossRef Boom, R., De Boer, M. R., & Miedema, A. R. (1976). On the heat of mixingof liquid alloys. Journal of the Less-Common Metals, 45, 237–245.CrossRef
59.
Zurück zum Zitat Van Der Kolk, G. J., Miedema, A. R., & Niessen, A. K. (1988). On thecomposition range of amorphous binary transition metal alloys. Journal of the Less-Common Metals, 145, 1–17.CrossRef Van Der Kolk, G. J., Miedema, A. R., & Niessen, A. K. (1988). On thecomposition range of amorphous binary transition metal alloys. Journal of the Less-Common Metals, 145, 1–17.CrossRef
60.
Zurück zum Zitat Coehoorn, R., Van Der Kolk, G. J., Van Den Broek, J. J., Minemura, T., & Miedema, A. R. (1988). Thermodynamics of the stability of amorphous alloys of two transition metals. Journal of the Less-Common Metals, 140, 307–316.CrossRef Coehoorn, R., Van Der Kolk, G. J., Van Den Broek, J. J., Minemura, T., & Miedema, A. R. (1988). Thermodynamics of the stability of amorphous alloys of two transition metals. Journal of the Less-Common Metals, 140, 307–316.CrossRef
61.
Zurück zum Zitat Xia, L., Fang, S. S., Wang, Q., Dong, Y. D., & Liu, C. T. (2006). Thermodynamic modeling of glass formation in metallic glasses. Applied Physics Letters, 88, 171905.CrossRef Xia, L., Fang, S. S., Wang, Q., Dong, Y. D., & Liu, C. T. (2006). Thermodynamic modeling of glass formation in metallic glasses. Applied Physics Letters, 88, 171905.CrossRef
62.
Zurück zum Zitat De Oliveira, M. F., Aliaga, L. C. R., Bolfarini, C., Otta, W. J., & Kiminami, C. S. (2008). Thermodynamic and topological instability approaches for forecasting glass-forming ability in the ternary Al–Ni–Y system. Journal of Alloys and Compounds, 464, 118–121.CrossRef De Oliveira, M. F., Aliaga, L. C. R., Bolfarini, C., Otta, W. J., & Kiminami, C. S. (2008). Thermodynamic and topological instability approaches for forecasting glass-forming ability in the ternary Al–Ni–Y system. Journal of Alloys and Compounds, 464, 118–121.CrossRef
63.
Zurück zum Zitat Inoue, A., Negishi, T., Kimura, H. M., Zhang, T., & Yavari, A. R. (1998). Materials Transactions, JIM, 39, 318.CrossRef Inoue, A., Negishi, T., Kimura, H. M., Zhang, T., & Yavari, A. R. (1998). Materials Transactions, JIM, 39, 318.CrossRef
64.
Zurück zum Zitat Wang, W. H., Wang, R. J., Zhao, D. Q., Pan, M. X., & Yao, Y. S. (2000). Physical Review B, 62, 11292.CrossRef Wang, W. H., Wang, R. J., Zhao, D. Q., Pan, M. X., & Yao, Y. S. (2000). Physical Review B, 62, 11292.CrossRef
65.
Zurück zum Zitat Wang, W. H., Wei, Q., Friedrich, S., Macht, M. P., Wanderka, N., & Wollenberger, H. (1997). Applied Physics Letters, 71, 1053.CrossRef Wang, W. H., Wei, Q., Friedrich, S., Macht, M. P., Wanderka, N., & Wollenberger, H. (1997). Applied Physics Letters, 71, 1053.CrossRef
66.
Zurück zum Zitat Miracle, D. B. (2004). Efficient local packing in metallic glasses. Journal of Non-Crystalline Solids, 342, 89–96.CrossRef Miracle, D. B. (2004). Efficient local packing in metallic glasses. Journal of Non-Crystalline Solids, 342, 89–96.CrossRef
67.
Zurück zum Zitat Miracle, D. B. (2004). A structural model for metallic glasses. Nature Materials, 3, 697–702.CrossRef Miracle, D. B. (2004). A structural model for metallic glasses. Nature Materials, 3, 697–702.CrossRef
68.
Zurück zum Zitat Egami, T., & Waseda, Y. (1984). Journal of Non-Crystalline Solids, 64, 113.CrossRef Egami, T., & Waseda, Y. (1984). Journal of Non-Crystalline Solids, 64, 113.CrossRef
69.
Zurück zum Zitat SáLisboa, R. D., Bolfarini, C., Botta F, W. J., & Kiminami, C. S. (2005). Applied Physics Letters, 86, 211904.CrossRef SáLisboa, R. D., Bolfarini, C., Botta F, W. J., & Kiminami, C. S. (2005). Applied Physics Letters, 86, 211904.CrossRef
70.
Zurück zum Zitat Kiminami, C. S., SáLisboa, R. D., de Oliveira, M. F., Bolfarini, C. & Botta, W. J. (2007). Materials Transactions, 48(7), 1739–1742. Kiminami, C. S., SáLisboa, R. D., de Oliveira, M. F., Bolfarini, C. & Botta, W. J. (2007). Materials Transactions, 48(7), 1739–1742.
72.
Zurück zum Zitat Chen, H. S., Krause, J. T., & Coleman, E. (1975). Journal of Non-Crystalline Solids, 18, 157.CrossRef Chen, H. S., Krause, J. T., & Coleman, E. (1975). Journal of Non-Crystalline Solids, 18, 157.CrossRef
73.
Zurück zum Zitat Drehman, A. L., Greer, A. L., & Turnbull, D. (1982). Applied Physics Letters, 41, 716.CrossRef Drehman, A. L., Greer, A. L., & Turnbull, D. (1982). Applied Physics Letters, 41, 716.CrossRef
74.
Zurück zum Zitat Inoue, A., Zhang, T., & Masumoto, T. (1989). Materials Transactions, JIM, 30, 965.CrossRef Inoue, A., Zhang, T., & Masumoto, T. (1989). Materials Transactions, JIM, 30, 965.CrossRef
75.
Zurück zum Zitat Inoue, A., et al. (1990). Materials Transactions of JIM, 31, 493. Inoue, A., et al. (1990). Materials Transactions of JIM, 31, 493.
76.
Zurück zum Zitat Peker, A., & Johnson, W. L. (1993). Applied Physics Letters, 63, 2342.CrossRef Peker, A., & Johnson, W. L. (1993). Applied Physics Letters, 63, 2342.CrossRef
77.
Zurück zum Zitat Lin, X. H., & Johnson, W. L. (1995). Journal of Applied Physics, 78, 6514.CrossRef Lin, X. H., & Johnson, W. L. (1995). Journal of Applied Physics, 78, 6514.CrossRef
78.
Zurück zum Zitat Leonhardt, M., Loser, W., & Lindenkreuz, H. G. (1999). Acta Materialia, 47, 2961.CrossRef Leonhardt, M., Loser, W., & Lindenkreuz, H. G. (1999). Acta Materialia, 47, 2961.CrossRef
79.
Zurück zum Zitat Inoue, A., Shen, B. L., & Chang, C. T. (2004). Acta Materialia, 52, 4093.CrossRef Inoue, A., Shen, B. L., & Chang, C. T. (2004). Acta Materialia, 52, 4093.CrossRef
80.
Zurück zum Zitat Lu, Z. P., Liu, C. T., Thompson, J. R., & Porter W. D. (2004). Physical Review Letters, 92. Lu, Z. P., Liu, C. T., Thompson, J. R., & Porter W. D. (2004). Physical Review Letters, 92.
81.
Zurück zum Zitat Gu, X. N., Zheng, Y. F., Zhong, S. P., Xi, T. F., Wang, J. Q., & Wang, W. H. (2010). Biomaterials, 31(6), 1093–1103.CrossRef Gu, X. N., Zheng, Y. F., Zhong, S. P., Xi, T. F., Wang, J. Q., & Wang, W. H. (2010). Biomaterials, 31(6), 1093–1103.CrossRef
82.
Zurück zum Zitat Guo, F. Q., Poon, S. J., & Shiflet, G. J. (2004). Applied Physics Letters, 84, 37.CrossRef Guo, F. Q., Poon, S. J., & Shiflet, G. J. (2004). Applied Physics Letters, 84, 37.CrossRef
83.
Zurück zum Zitat Pu, J., Wang, J. F., & Xiao, J. Z. (2003). Nonferrous Metals Society, 13, 1056. Pu, J., Wang, J. F., & Xiao, J. Z. (2003). Nonferrous Metals Society, 13, 1056.
84.
Zurück zum Zitat Tang, M. B., Zhao, D. Q., Pan, M. X., & Wang, W. H. (2004). Chinese Physics Letters, 21, 901.CrossRef Tang, M. B., Zhao, D. Q., Pan, M. X., & Wang, W. H. (2004). Chinese Physics Letters, 21, 901.CrossRef
85.
86.
Zurück zum Zitat Wang, W. H., Dong, C., & Shek, C. H. (2004). Bulk metallic Glasses. Materials Science and Engineering R, 44, 45–89.CrossRef Wang, W. H., Dong, C., & Shek, C. H. (2004). Bulk metallic Glasses. Materials Science and Engineering R, 44, 45–89.CrossRef
87.
Zurück zum Zitat Lavernia, E. J., & Wu, Y. (1996). Spray atomization and deposition (pp. 155–260). West Sussex, England: John Wiley and Sons. Lavernia, E. J., & Wu, Y. (1996). Spray atomization and deposition (pp. 155–260). West Sussex, England: John Wiley and Sons.
88.
89.
Zurück zum Zitat Srivastava, V. C., Mandal, R. K., & Ojha, S. N. (2004). Materials Science and Engineering A, 383, 14.CrossRef Srivastava, V. C., Mandal, R. K., & Ojha, S. N. (2004). Materials Science and Engineering A, 383, 14.CrossRef
90.
Zurück zum Zitat Lavernia, E. J., Ayers, J. D., & Srivatsan, T. S. (1992). International Materials Review, 37, 1.CrossRef Lavernia, E. J., Ayers, J. D., & Srivatsan, T. S. (1992). International Materials Review, 37, 1.CrossRef
91.
Zurück zum Zitat Grant, P. S. (2007). Metallurgical and Materials Transactions A, 38, 1520.CrossRef Grant, P. S. (2007). Metallurgical and Materials Transactions A, 38, 1520.CrossRef
92.
Zurück zum Zitat Srivastava, V. C., Mandal, R. K., Ojha, S. N., & Venkateswarlu, K. (2007). Materials Science and Engineering A, 471, 38.CrossRef Srivastava, V. C., Mandal, R. K., Ojha, S. N., & Venkateswarlu, K. (2007). Materials Science and Engineering A, 471, 38.CrossRef
93.
Zurück zum Zitat Srivastava, V. C., Uhlenwinkel, V., Schulz, A., Zoch, H.-W., Mukhopadhyay, N. K., & Chowdhury, S. G. (2008). Zeitschrift fuer Kristallographie, 223, 711. Srivastava, V. C., Uhlenwinkel, V., Schulz, A., Zoch, H.-W., Mukhopadhyay, N. K., & Chowdhury, S. G. (2008). Zeitschrift fuer Kristallographie, 223, 711.
94.
Zurück zum Zitat Srivastava, V. C., Mandal, R. K., & Ojha, S. N. (2001). Materials Science and Engineering A, 304–306, 555.CrossRef Srivastava, V. C., Mandal, R. K., & Ojha, S. N. (2001). Materials Science and Engineering A, 304–306, 555.CrossRef
95.
Zurück zum Zitat Srivastava, V. C., Mandal, R. K., & Ojha, S. N. (2001). Journal of Materials Science Letters, 20, 27.CrossRef Srivastava, V. C., Mandal, R. K., & Ojha, S. N. (2001). Journal of Materials Science Letters, 20, 27.CrossRef
96.
Zurück zum Zitat Shukla, P., Mandal, R. K., & Ojha, S. N. (2001). Bulletin of Materials Science, 24, 547–554.CrossRef Shukla, P., Mandal, R. K., & Ojha, S. N. (2001). Bulletin of Materials Science, 24, 547–554.CrossRef
97.
Zurück zum Zitat Srivastava, V. C., Huttunen-Saarivirta, E., Cui, C., Uhlenwinkel, V., Schulz, A., & Mukhopadhyay, N. K. (2014). Journal of Alloys and Compounds, 597, 258–268.CrossRef Srivastava, V. C., Huttunen-Saarivirta, E., Cui, C., Uhlenwinkel, V., Schulz, A., & Mukhopadhyay, N. K. (2014). Journal of Alloys and Compounds, 597, 258–268.CrossRef
98.
Zurück zum Zitat Oguchi, M., Inoue, A., Yamaguchi, H., & Masumoto, T. (1990). Materials Transactions, JIM, 31, 1005–1010.CrossRef Oguchi, M., Inoue, A., Yamaguchi, H., & Masumoto, T. (1990). Materials Transactions, JIM, 31, 1005–1010.CrossRef
99.
Zurück zum Zitat Kawamura, Y., et al. (1993). Materials Transactions of JIM, 34, 969. Kawamura, Y., et al. (1993). Materials Transactions of JIM, 34, 969.
100.
Zurück zum Zitat Inoue, A., et al. (2001). Scripta Materialia, 44, 1599. Inoue, A., et al. (2001). Scripta Materialia, 44, 1599.
101.
Zurück zum Zitat Srivastava, V. C., Surreddi, K. B., Scudino, S., Schowalter, M., Uhlenwinkel, V., Schulz, A., Rosenauer, A., Zoch, H.-W., & Eckert, J. (2009). Transactions of the Indian Institute of Metals, 62(4–5), 331–335.CrossRef Srivastava, V. C., Surreddi, K. B., Scudino, S., Schowalter, M., Uhlenwinkel, V., Schulz, A., Rosenauer, A., Zoch, H.-W., & Eckert, J. (2009). Transactions of the Indian Institute of Metals, 62(4–5), 331–335.CrossRef
102.
Zurück zum Zitat Srivastava, V. C., Ellendt, N., Meyer, C., & Uhlenwinkel, V. (2014). Materialwissenschaft und Werkstofftechnik, 45(8), 744–757.CrossRef Srivastava, V. C., Ellendt, N., Meyer, C., & Uhlenwinkel, V. (2014). Materialwissenschaft und Werkstofftechnik, 45(8), 744–757.CrossRef
103.
Zurück zum Zitat Guo, M. L. T., Tsao, C. Y. A., Chang, K. F., Huang, J. C., & Jang, J. S. C. (2007). Materials Transactions, 48, 1717.CrossRef Guo, M. L. T., Tsao, C. Y. A., Chang, K. F., Huang, J. C., & Jang, J. S. C. (2007). Materials Transactions, 48, 1717.CrossRef
104.
Zurück zum Zitat Guo, M. L. T., Tsao, C. Y. A., Huang, J. C., & Jang, J. S. C. (2006). Intermetallics, 14, 1069.CrossRef Guo, M. L. T., Tsao, C. Y. A., Huang, J. C., & Jang, J. S. C. (2006). Intermetallics, 14, 1069.CrossRef
105.
Zurück zum Zitat Zhuo, L., Yang, B., Wang, H., & Zhang, T. (2011). Journal of Alloys and Compounds, 509, L169.CrossRef Zhuo, L., Yang, B., Wang, H., & Zhang, T. (2011). Journal of Alloys and Compounds, 509, L169.CrossRef
106.
Zurück zum Zitat Yan, M., Wang, J. Q., Schaffer, G. B., & Qian, M. (2011). Journal of Materials Research, 26, 944.CrossRef Yan, M., Wang, J. Q., Schaffer, G. B., & Qian, M. (2011). Journal of Materials Research, 26, 944.CrossRef
107.
Zurück zum Zitat Saito, T., Takahashi, S., & Kuji, T. (1998). Journal of Materials Science Letters, 17, 1007.CrossRef Saito, T., Takahashi, S., & Kuji, T. (1998). Journal of Materials Science Letters, 17, 1007.CrossRef
108.
Zurück zum Zitat Ma, L., Wang, L., Zhang, T., & Inoue, A. (1999). Materials Research Bulletin, 34, 915.CrossRef Ma, L., Wang, L., Zhang, T., & Inoue, A. (1999). Materials Research Bulletin, 34, 915.CrossRef
109.
110.
Zurück zum Zitat Afonso, C. R. M., Bolfarini, C., BottaFilho, W. J., & Kiminami, C. S. (2004). Journal of Metastable and Nanocrystalline Materials, 22, 93.CrossRef Afonso, C. R. M., Bolfarini, C., BottaFilho, W. J., & Kiminami, C. S. (2004). Journal of Metastable and Nanocrystalline Materials, 22, 93.CrossRef
111.
Zurück zum Zitat Catto, F. L., Yonamine, T., Kiminami, C. S., Afonso, C. R. M., Botta, W. J., & Bolfarini, C. (2011). Journal of Alloys and Compounds, 509, S148.CrossRef Catto, F. L., Yonamine, T., Kiminami, C. S., Afonso, C. R. M., Botta, W. J., & Bolfarini, C. (2011). Journal of Alloys and Compounds, 509, S148.CrossRef
112.
Zurück zum Zitat Cava, R. D., Aliaga, L. C. R., Trivenõ Rios, C., Uhlenwinkel, V., Ellendt, N., Kiminami, C. S., et al. (2014). Microstructure characterization and kinetics of crystallization behavior of tubular spray formed Fe43.2Co28.8B19.2Si4.8Nb4 bulk metallic glass. Journal of Heat Treament and Materials, 69(5), 312–321. doi:10.3139/105.110236.CrossRef Cava, R. D., Aliaga, L. C. R., Trivenõ Rios, C., Uhlenwinkel, V., Ellendt, N., Kiminami, C. S., et al. (2014). Microstructure characterization and kinetics of crystallization behavior of tubular spray formed Fe43.2Co28.8B19.2Si4.8Nb4 bulk metallic glass. Journal of Heat Treament and Materials, 69(5), 312–321. doi:10.​3139/​105.​110236.CrossRef
113.
Zurück zum Zitat Xi, X. K., Wang, R. J., Zhao, D. Q., Pan, M. X., & Wang, W. H. (2004). Journal of Non-Crystalline Solids, 344, 105.CrossRef Xi, X. K., Wang, R. J., Zhao, D. Q., Pan, M. X., & Wang, W. H. (2004). Journal of Non-Crystalline Solids, 344, 105.CrossRef
114.
Zurück zum Zitat Men, H., & Kim, D. H. (2003). Journal of Materials Research, 7, 1502.CrossRef Men, H., & Kim, D. H. (2003). Journal of Materials Research, 7, 1502.CrossRef
115.
Zurück zum Zitat Yuan, G., & Inoue, A. (2005). Journal of Alloys and Compounds, 387, 134.CrossRef Yuan, G., & Inoue, A. (2005). Journal of Alloys and Compounds, 387, 134.CrossRef
116.
Zurück zum Zitat Chang, K. F., Chen, F. H., Fan, S. K., & Tsao, C. Y. A. (2008). Advances in Materials Research, 51, 57.CrossRef Chang, K. F., Chen, F. H., Fan, S. K., & Tsao, C. Y. A. (2008). Advances in Materials Research, 51, 57.CrossRef
117.
Zurück zum Zitat Chang, K. F., Guo, M. L. T., Kong, R. H., Tsao, C. Y. A., Huang, J. C., & Jang, J. S. C. (2008). Materials Science and Engineering A, 477, 58.CrossRef Chang, K. F., Guo, M. L. T., Kong, R. H., Tsao, C. Y. A., Huang, J. C., & Jang, J. S. C. (2008). Materials Science and Engineering A, 477, 58.CrossRef
118.
Zurück zum Zitat Fritsching, U. (2004). Spray simulation. Modelling and numerical simulation of spray forming of metals. Cambridge: Cambridge University Press.CrossRef Fritsching, U. (2004). Spray simulation. Modelling and numerical simulation of spray forming of metals. Cambridge: Cambridge University Press.CrossRef
119.
Zurück zum Zitat Bergmann, D., & Fritsching, U. (2004). International Journal of Thermal Sciences, 43, 403.CrossRef Bergmann, D., & Fritsching, U. (2004). International Journal of Thermal Sciences, 43, 403.CrossRef
120.
Zurück zum Zitat Ellendt, N., Stelling, O., Uhlenwinkel, V., von Hehl, A., & Krug, P. (2010). Materials Science and Engineering Technology, 41, 532. Ellendt, N., Stelling, O., Uhlenwinkel, V., von Hehl, A., & Krug, P. (2010). Materials Science and Engineering Technology, 41, 532.
121.
Zurück zum Zitat Kasama, A. H., Bolfarini, C., Kiminami, C. S., & Botta Filho, W. J. (2007). Materials Science and Engineering A, 449–451, 375.CrossRef Kasama, A. H., Bolfarini, C., Kiminami, C. S., & Botta Filho, W. J. (2007). Materials Science and Engineering A, 449–451, 375.CrossRef
122.
Zurück zum Zitat Kasama, A. H., Mourisco, A. J., Kiminami, C. S., Botta Filho, W. J., & Bolfarini, C. (2004). Materials Science and Engineering A, 375–377, 589.CrossRef Kasama, A. H., Mourisco, A. J., Kiminami, C. S., Botta Filho, W. J., & Bolfarini, C. (2004). Materials Science and Engineering A, 375–377, 589.CrossRef
123.
Zurück zum Zitat Ellendt, N., Schmidt, R., Knabe, J., Henein, H., & Uhlenwinkel, V. (2004). Materials Science and Engineering A, 383, 107.CrossRef Ellendt, N., Schmidt, R., Knabe, J., Henein, H., & Uhlenwinkel, V. (2004). Materials Science and Engineering A, 383, 107.CrossRef
124.
Zurück zum Zitat McHugh, K., Uhlenwinkel, V., & Ellendt, N. (2008). Density of sprayformed materials. In Proceedings of PM2008 Washington, 8.-12. June. McHugh, K., Uhlenwinkel, V., & Ellendt, N. (2008). Density of sprayformed materials. In Proceedings of PM2008 Washington, 8.-12. June.
125.
Zurück zum Zitat Chen, W. Z., Song, X. P., Qian, K. W., & Gu, H. C. (1998). Materials Science and Engineering A, 247, 126.CrossRef Chen, W. Z., Song, X. P., Qian, K. W., & Gu, H. C. (1998). Materials Science and Engineering A, 247, 126.CrossRef
126.
Zurück zum Zitat Achelis, L., Uhlenwinkel, V., Lagutkin, S., & Sheikhaliev, S. (2007). Materials Science Forum, 534–536, 13.CrossRef Achelis, L., Uhlenwinkel, V., Lagutkin, S., & Sheikhaliev, S. (2007). Materials Science Forum, 534–536, 13.CrossRef
127.
Zurück zum Zitat McDonald, A., Moreau, C., & Chandra, S. (2007). International Journal of Heat and Mass Transfer, 50, 1737.CrossRef McDonald, A., Moreau, C., & Chandra, S. (2007). International Journal of Heat and Mass Transfer, 50, 1737.CrossRef
128.
Zurück zum Zitat Abedini, A., Pourmousa, A., Chandra, S., & Mostaghimi, J. (2006). Surface and Coating Technology, 201, 3350.CrossRef Abedini, A., Pourmousa, A., Chandra, S., & Mostaghimi, J. (2006). Surface and Coating Technology, 201, 3350.CrossRef
129.
Zurück zum Zitat Dhiman, R., & Chandra, S. (2005). International Journal of Heat and Mass Transfer, 48, 5625.CrossRef Dhiman, R., & Chandra, S. (2005). International Journal of Heat and Mass Transfer, 48, 5625.CrossRef
130.
Zurück zum Zitat Dhiman, R., McDonald, A., & Chandra, S. (2007). Surface and Coating Technology, 201, 7789.CrossRef Dhiman, R., McDonald, A., & Chandra, S. (2007). Surface and Coating Technology, 201, 7789.CrossRef
131.
Zurück zum Zitat Meyer, O., Schneider, A., Uhlenwinkel, V., & Fritsching, U. (2003). International Journal of Thermal Sciences, 42, 561.CrossRef Meyer, O., Schneider, A., Uhlenwinkel, V., & Fritsching, U. (2003). International Journal of Thermal Sciences, 42, 561.CrossRef
132.
Zurück zum Zitat Meyer, O., Fritsching, U., & Bauckhage, K. (2003). Numerical investigation of alternative process conditions for influencing the thermal history of spray deposited billets. International Journal of Thermal Sciences, 42, 153–168.CrossRef Meyer, O., Fritsching, U., & Bauckhage, K. (2003). Numerical investigation of alternative process conditions for influencing the thermal history of spray deposited billets. International Journal of Thermal Sciences, 42, 153–168.CrossRef
133.
Zurück zum Zitat Cui, C. S., Fritsching, U., Schulz, A., Tinscher, R., Bauckhage, K., & Mayr, P. (2005). Spray forming of homogeneous 100Cr6 bearing steel billets. Journal of Materials Processing Technology, 168, 496–504.CrossRef Cui, C. S., Fritsching, U., Schulz, A., Tinscher, R., Bauckhage, K., & Mayr, P. (2005). Spray forming of homogeneous 100Cr6 bearing steel billets. Journal of Materials Processing Technology, 168, 496–504.CrossRef
Metadaten
Titel
Spray Forming of Novel Materials
verfasst von
Claudemiro Bolfarini
Vikas Chandra Srivastava
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-52689-8_14

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.