Skip to main content

2015 | OriginalPaper | Buchkapitel

5. Hochenergiebatterien nach Lithium-Ion

verfasst von : Peter Kurzweil, Prof. Dr.

Erschienen in: Elektrochemische Speicher

Verlag: Springer Fachmedien Wiesbaden

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Wiederaufladbare Batterien mit spezifischen Energien jenseits der 200 Wh kg−1 und herausragenden Leistungsdichten sollen die heutige Lithiumionen-Technologie in den nächsten Jahrzehnten ablösen. Manche Forschungsansätze reichen in die Zeit der Ölkrise in den 1970er und 1980er Jahren zurück. Das Kapitel beschreibt visionäre Konzepte von Metallionen- und Metall-Luft-Batterien, bis hin zu Festkörpertechnologien und Anionen-Batterien. Vor- und Nachteile werden im Hinblick auf eine baldige Nutzung in Speichersystemen abgewogen.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Agostini, M., Lee, D.-J., Scrosati, B., Sun, Y.K., Hassoun, J.: Characteristics of Li2S8-tetraglyme catholyte in a semi-liquid lithium-sulfur battery. J. Power Sources 265, 14–19 (2014) CrossRef Agostini, M., Lee, D.-J., Scrosati, B., Sun, Y.K., Hassoun, J.: Characteristics of Li2S8-tetraglyme catholyte in a semi-liquid lithium-sulfur battery. J. Power Sources 265, 14–19 (2014) CrossRef
2.
Zurück zum Zitat Chen, L., Shaw, L.L.: Recent advances in lithium-sulfur batteries. J. Power Sources 267, 770–783 (2014) CrossRef Chen, L., Shaw, L.L.: Recent advances in lithium-sulfur batteries. J. Power Sources 267, 770–783 (2014) CrossRef
3.
Zurück zum Zitat Ding, N., Chien, S.W., Hor, T.S.A., Liu, Z., Zong, Y.: Key parameters in design of lithium sulfur batteries. J. Power Sources 269, 111–116 (2014) CrossRef Ding, N., Chien, S.W., Hor, T.S.A., Liu, Z., Zong, Y.: Key parameters in design of lithium sulfur batteries. J. Power Sources 269, 111–116 (2014) CrossRef
4.
Zurück zum Zitat Hassoun, J., Scrosati, B.: A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49, 2371–2374 (2010) CrossRef Hassoun, J., Scrosati, B.: A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49, 2371–2374 (2010) CrossRef
5.
Zurück zum Zitat Hoss, R., Vögtle, F.: Templatsynthesen. Angew. Chem. 106(4), 389 (1994) CrossRef Hoss, R., Vögtle, F.: Templatsynthesen. Angew. Chem. 106(4), 389 (1994) CrossRef
6.
Zurück zum Zitat Huang, C., Xiao, J., Shao, Y., Zheng, J., Bennett, W.D., Lu, D., Saraf, L.V., Engelhard, M., Ji, L., Zhang, J., Li, X., Graff, G.L., Liu, J.: Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures. Nat. Commun. 5, 3015 (2014) Huang, C., Xiao, J., Shao, Y., Zheng, J., Bennett, W.D., Lu, D., Saraf, L.V., Engelhard, M., Ji, L., Zhang, J., Li, X., Graff, G.L., Liu, J.: Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures. Nat. Commun. 5, 3015 (2014)
7.
Zurück zum Zitat Kim, J., Lee, D.-J., Jung, H.-G., Sun, Y.-K., Hassoun, J., Scrosati, B.: An advanced lithium-sulfur battery. Adv. Funct. Mat. 23, 1076–1080 (2013) CrossRef Kim, J., Lee, D.-J., Jung, H.-G., Sun, Y.-K., Hassoun, J., Scrosati, B.: An advanced lithium-sulfur battery. Adv. Funct. Mat. 23, 1076–1080 (2013) CrossRef
8.
Zurück zum Zitat Lin, Z., Liu, Z., Fu, W., Dudney, N.J., Liang, C.: Lithium polysulfidophosphates: A family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. Angew. Chem. Int. Ed. 52, 7460–7463 (2013) CrossRef Lin, Z., Liu, Z., Fu, W., Dudney, N.J., Liang, C.: Lithium polysulfidophosphates: A family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. Angew. Chem. Int. Ed. 52, 7460–7463 (2013) CrossRef
9.
Zurück zum Zitat Scrosati, B., Abraham, K.M., van Schalkwijk, W., Hassoun, J.: Lithium Batteries, Advanced Technologies and Applications. Wiley, Hoboken (2013) CrossRef Scrosati, B., Abraham, K.M., van Schalkwijk, W., Hassoun, J.: Lithium Batteries, Advanced Technologies and Applications. Wiley, Hoboken (2013) CrossRef
10.
Zurück zum Zitat Scheers, J., Fantini, S., Johansson, P.: A review of electrolytes for lithium-sulphur batteries. J. Power Sources 255, 204–218 (2014) CrossRef Scheers, J., Fantini, S., Johansson, P.: A review of electrolytes for lithium-sulphur batteries. J. Power Sources 255, 204–218 (2014) CrossRef
11.
Zurück zum Zitat Seh, Z.W., Li, W., Cha, J.J., Zheng, G., Yang, Y., McDowell, M.T., Hsu, P.C., Cui, Y.: Sulphur–TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1331 (2013) CrossRef Seh, Z.W., Li, W., Cha, J.J., Zheng, G., Yang, Y., McDowell, M.T., Hsu, P.C., Cui, Y.: Sulphur–TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1331 (2013) CrossRef
13.
Zurück zum Zitat Abraham, K.M., Jiang, Z.: A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996) CrossRef Abraham, K.M., Jiang, Z.: A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996) CrossRef
14.
Zurück zum Zitat Aurbach, D., Daroux, M., Faguy, P., Yeager, E.: The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts. J. Electroanal. Chem. 297, 225–244 (1991) CrossRef Aurbach, D., Daroux, M., Faguy, P., Yeager, E.: The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts. J. Electroanal. Chem. 297, 225–244 (1991) CrossRef
15.
Zurück zum Zitat McCloskey, B.D., Bethune, D.S., Shelby, R.M., Girishkumar, G., Luntz, A.C.: Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry. J. Phys. Chem. Lett. 2(10), 1161–1166 (2011) CrossRef McCloskey, B.D., Bethune, D.S., Shelby, R.M., Girishkumar, G., Luntz, A.C.: Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry. J. Phys. Chem. Lett. 2(10), 1161–1166 (2011) CrossRef
16.
Zurück zum Zitat Jung, H.-G., Hassoun, J., Park, J.-B., Sun, Y.-K., Scrosati, B.: An improved high-performance lithium-air battery. Nat. Chem. 4, 579–585 (2012) CrossRef Jung, H.-G., Hassoun, J., Park, J.-B., Sun, Y.-K., Scrosati, B.: An improved high-performance lithium-air battery. Nat. Chem. 4, 579–585 (2012) CrossRef
17.
Zurück zum Zitat Li, F., Kitaura, H., Zhou, H.: The pursuit of rechargeable solid-state Li–air batteries. Energy Environ. Sci. 6, 2302–2311 (2013) Li, F., Kitaura, H., Zhou, H.: The pursuit of rechargeable solid-state Li–air batteries. Energy Environ. Sci. 6, 2302–2311 (2013)
18.
Zurück zum Zitat Lu, Y.C., Xu, Z., Gasteiger, H.A., Chen, S., et al.: Platinum-gold nanoparticles: a highly active functional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 132(35), 12170–12171 (2010) CrossRef Lu, Y.C., Xu, Z., Gasteiger, H.A., Chen, S., et al.: Platinum-gold nanoparticles: a highly active functional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 132(35), 12170–12171 (2010) CrossRef
19.
Zurück zum Zitat Kowalczk, I., Read, J., Salomon, M.: Li-air batteries: A classic example of limitations owing to solubilities. Pure Appl. Chem. 79, 851–860 (2007) CrossRef Kowalczk, I., Read, J., Salomon, M.: Li-air batteries: A classic example of limitations owing to solubilities. Pure Appl. Chem. 79, 851–860 (2007) CrossRef
20.
Zurück zum Zitat Littauer, E.L., Tsai, K.C.: Anodic behavior of lithium in aqueous electrolytes. J. Electrochem. Soc. 123, 771–776 (1976) CrossRef Littauer, E.L., Tsai, K.C.: Anodic behavior of lithium in aqueous electrolytes. J. Electrochem. Soc. 123, 771–776 (1976) CrossRef
21.
Zurück zum Zitat Ogasawara, T., Debart, A., Holzapfel, M., Novak, P., Bruce, P.G.: Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006) CrossRef Ogasawara, T., Debart, A., Holzapfel, M., Novak, P., Bruce, P.G.: Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006) CrossRef
22.
Zurück zum Zitat Peng, Z., Freunberger, S.A., Chen, Y., Bruce, P.G.: A reversible and higher-rate Li-O2 battery. Science 337, 563–566 (2012) CrossRef Peng, Z., Freunberger, S.A., Chen, Y., Bruce, P.G.: A reversible and higher-rate Li-O2 battery. Science 337, 563–566 (2012) CrossRef
23.
Zurück zum Zitat (a) Visco, S.J., Nimon, E., De Jonghe, L.C. In: Garche, J. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 376. Elsevier, Amsterdam (2009) (b) US 7645543 (2010), US 7282295 (2007), US 7282296 (2007), US 7824806 (2010), US 20130045428 (a) Visco, S.J., Nimon, E., De Jonghe, L.C. In: Garche, J. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 376. Elsevier, Amsterdam (2009) (b) US 7645543 (2010), US 7282295 (2007), US 7282296 (2007), US 7824806 (2010), US 20130045428
24.
Zurück zum Zitat Visco, S.J., Nimon, V.Y., Petrov, A., Pridatko, K., Goncharenko, N., Nimon, E., De Jonghe, L., Volfkovich, Y.M., Bograchev, D.A.: Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes. J. Solid State Electrochem. 18, 1443–1456 (2014) Visco, S.J., Nimon, V.Y., Petrov, A., Pridatko, K., Goncharenko, N., Nimon, E., De Jonghe, L., Volfkovich, Y.M., Bograchev, D.A.: Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes. J. Solid State Electrochem. 18, 1443–1456 (2014)
25.
Zurück zum Zitat Walker, W., Giordani, V., Uddin, J., Bryantsev, V.S., Chase, G.V., Addison, D.: A rechargeable Li–O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J. Am. Chem. Soc. 135, 2076–2079 (2013) CrossRef Walker, W., Giordani, V., Uddin, J., Bryantsev, V.S., Chase, G.V., Addison, D.: A rechargeable Li–O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J. Am. Chem. Soc. 135, 2076–2079 (2013) CrossRef
26.
Zurück zum Zitat Wang, J., Li, Y., Sun, X.: Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries. Nano Energy 2, 443–467 (2013) CrossRef Wang, J., Li, Y., Sun, X.: Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries. Nano Energy 2, 443–467 (2013) CrossRef
27.
Zurück zum Zitat Wang, Y., He, P., Zhou, H.: A lithium-air capacitor-battery based on a hybrid electrolyte. Energy Environ. Sci. 4, 4994–4999 (2011) Wang, Y., He, P., Zhou, H.: A lithium-air capacitor-battery based on a hybrid electrolyte. Energy Environ. Sci. 4, 4994–4999 (2011)
28.
Zurück zum Zitat (a) Xie, B., Lee, H.S., Li, H., Yang, X.Q., McBreen, J., Chen, L.Q.: New electrolytes using Li2O or Li2O2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. Electrochem. Commun. 10, 1195–1197 (2008) (b) Li, L.F., Xie, B., Lee, H.S., Li, H., Yang, X.-Q., McBreen, J., Huang, X.J.: Studies on the enhancement of solid electrolyte interphase formation on graphitized anodes in LiX-carbonate based electrolytes using Lewis acid additives for lithium-ion batteries. J. Power Sources 189, 539–542 (2009) (c) Shanmukaraj, D., Grugeon, S., Gachot, G., Laruelle, S., Mathiron, D., Tarascon, J.M., Armand, M.: Boron esters as tunable anion carriers for non-aqueous batteries electrochemistry. J. Am. Chem. Soc. 132, 3055–3062 (2010) (a) Xie, B., Lee, H.S., Li, H., Yang, X.Q., McBreen, J., Chen, L.Q.: New electrolytes using Li2O or Li2O2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. Electrochem. Commun. 10, 1195–1197 (2008) (b) Li, L.F., Xie, B., Lee, H.S., Li, H., Yang, X.-Q., McBreen, J., Huang, X.J.: Studies on the enhancement of solid electrolyte interphase formation on graphitized anodes in LiX-carbonate based electrolytes using Lewis acid additives for lithium-ion batteries. J. Power Sources 189, 539–542 (2009) (c) Shanmukaraj, D., Grugeon, S., Gachot, G., Laruelle, S., Mathiron, D., Tarascon, J.M., Armand, M.: Boron esters as tunable anion carriers for non-aqueous batteries electrochemistry. J. Am. Chem. Soc. 132, 3055–3062 (2010)
29.
Zurück zum Zitat Zhang, D., Li, R., Huang, T., Yu, A.: Novel composite polymer electrolyte for lithium air batteries. J. Power Sources 195, 1202–1206 (2010) CrossRef Zhang, D., Li, R., Huang, T., Yu, A.: Novel composite polymer electrolyte for lithium air batteries. J. Power Sources 195, 1202–1206 (2010) CrossRef
30.
Zurück zum Zitat Zheng, J.P., Liang, R.Y., Hendrickson, M., Plichta, E.J.: Theoretical energy density of Li-air batteries. J. Electrochem. Soc. 155, A432–A437 (2008) CrossRef Zheng, J.P., Liang, R.Y., Hendrickson, M., Plichta, E.J.: Theoretical energy density of Li-air batteries. J. Electrochem. Soc. 155, A432–A437 (2008) CrossRef
31.
Zurück zum Zitat Barpanda, P., Oyama, G., Nishimura, S., Chung, S.-C., Yamada, A.: A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 5, 4358 (2014) CrossRef Barpanda, P., Oyama, G., Nishimura, S., Chung, S.-C., Yamada, A.: A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 5, 4358 (2014) CrossRef
32.
Zurück zum Zitat Berthelot, R., Carlier, D., Delmas, C.: Electrochemical investigation of the P2–Na x CoO2 phase diagram. Nat. Mater. 10, 74–80 (2011) CrossRef Berthelot, R., Carlier, D., Delmas, C.: Electrochemical investigation of the P2–Na x CoO2 phase diagram. Nat. Mater. 10, 74–80 (2011) CrossRef
33.
Zurück zum Zitat Brandt, K.: Historical development of secondary lithium batteries. Solid State Ionics 69, 173–183 (1994) CrossRef Brandt, K.: Historical development of secondary lithium batteries. Solid State Ionics 69, 173–183 (1994) CrossRef
34.
Zurück zum Zitat Chen, S., Bi, J., Zhao, Y., Yang, L., Zhang, C., et al.: Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 24(41), 5593–5597 (2012) CrossRef Chen, S., Bi, J., Zhao, Y., Yang, L., Zhang, C., et al.: Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 24(41), 5593–5597 (2012) CrossRef
35.
Zurück zum Zitat Chen, Z., Higgins, D., Yu, A., Zhang, L., Zhang, J.: A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167–3192 (2011) Chen, Z., Higgins, D., Yu, A., Zhang, L., Zhang, J.: A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167–3192 (2011)
36.
Zurück zum Zitat Datta, D., Li, J., Shenoy, V.B.: Defective graphene as a high-capacity anode material for Na- and Ca-ion batteries. ACS Appl. Mater. Interfaces 6, 1788–1795 (2014) CrossRef Datta, D., Li, J., Shenoy, V.B.: Defective graphene as a high-capacity anode material for Na- and Ca-ion batteries. ACS Appl. Mater. Interfaces 6, 1788–1795 (2014) CrossRef
37.
Zurück zum Zitat Ding, F., Xu, W., Graff, G.L., Zhang, J., Sushko, M.L., et al.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013) CrossRef Ding, F., Xu, W., Graff, G.L., Zhang, J., Sushko, M.L., et al.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013) CrossRef
38.
Zurück zum Zitat Ellis, B.L., Nazar, L.F.: Sodium and sodium-ion energy storage batteries. Current opinion in solid state and materials. Science 16, 168–177 (2012) Ellis, B.L., Nazar, L.F.: Sodium and sodium-ion energy storage batteries. Current opinion in solid state and materials. Science 16, 168–177 (2012)
39.
Zurück zum Zitat Goodenough, J.B., Hong, H.Y.P., Kafalas, J.A.: Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976) CrossRef Goodenough, J.B., Hong, H.Y.P., Kafalas, J.A.: Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976) CrossRef
40.
Zurück zum Zitat Hartmann, P., Bender, C.L., Vracar, M., Dürr, A.K., Garsuch, A., Janek, J., Adelhelm, P.: A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat. Mater. 12, 228–232 (2013) CrossRef Hartmann, P., Bender, C.L., Vracar, M., Dürr, A.K., Garsuch, A., Janek, J., Adelhelm, P.: A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat. Mater. 12, 228–232 (2013) CrossRef
41.
Zurück zum Zitat Jache, B., Adelhelm, P.: Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. Int. Ed. 53(38), 10169–10173 (2014) CrossRef Jache, B., Adelhelm, P.: Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. Int. Ed. 53(38), 10169–10173 (2014) CrossRef
42.
Zurück zum Zitat Janek, J., Adelhelm, P.: Zukunftstechnologien. In: Korthauer, R. (Hrsg.) Handbuch Lithium-Ionen-Batterien, Kap. 16, S. 199–217. Springer, Berlin (2013) CrossRef Janek, J., Adelhelm, P.: Zukunftstechnologien. In: Korthauer, R. (Hrsg.) Handbuch Lithium-Ionen-Batterien, Kap. 16, S. 199–217. Springer, Berlin (2013) CrossRef
43.
Zurück zum Zitat Komaba, S., Murata, W., Ishikawa, T., Yabuuchi, N., Ozeki, T., Nakayama, T., Ogata, A., Gotoh, K., Fujiwara, K.: Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21, 3859–3867 (2011) CrossRef Komaba, S., Murata, W., Ishikawa, T., Yabuuchi, N., Ozeki, T., Nakayama, T., Ogata, A., Gotoh, K., Fujiwara, K.: Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21, 3859–3867 (2011) CrossRef
44.
Zurück zum Zitat Palomares, V., Casas-Cabanas, M., Castillo-Martínez, E., Han, M.H., Rojo, T.: Update on Na-based battery materials. A growing research path. Energy Environ. Sci. 6, 2312–2337 (2013) Palomares, V., Casas-Cabanas, M., Castillo-Martínez, E., Han, M.H., Rojo, T.: Update on Na-based battery materials. A growing research path. Energy Environ. Sci. 6, 2312–2337 (2013)
45.
Zurück zum Zitat Peled, E., Golodnitsky, D., Mazor, H., Goor, M., Avshalomov, S.: Parameter analysis of a practical lithium- and sodium-air electric vehicle battery. J. Power Sources 196, 6835 (2011) CrossRef Peled, E., Golodnitsky, D., Mazor, H., Goor, M., Avshalomov, S.: Parameter analysis of a practical lithium- and sodium-air electric vehicle battery. J. Power Sources 196, 6835 (2011) CrossRef
46.
Zurück zum Zitat Vesborg, P.C.K., Jaramillo, T.F.: Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012) CrossRef Vesborg, P.C.K., Jaramillo, T.F.: Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012) CrossRef
47.
Zurück zum Zitat Wenzel, S., Hara, T., Janek, J., Adelhelm, P.: Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4, 3342 (2011) CrossRef Wenzel, S., Hara, T., Janek, J., Adelhelm, P.: Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4, 3342 (2011) CrossRef
48.
Zurück zum Zitat Yamamoto, T., Nohira, T., Hagiwara, R., Fukunaga, A., Sakai, S., Nitta, K., Inazawa, S.: Charge-discharge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl)amide-potassium bis(fluorosulfonyl)amide. J. Power Sources 217, 479–484 (2012) CrossRef Yamamoto, T., Nohira, T., Hagiwara, R., Fukunaga, A., Sakai, S., Nitta, K., Inazawa, S.: Charge-discharge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl)amide-potassium bis(fluorosulfonyl)amide. J. Power Sources 217, 479–484 (2012) CrossRef
49.
Zurück zum Zitat Buschmann, H., Berendts, S., Mogwitz, B., Janek, J.: Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors Li7La3Zr2O12 and Li\({}_{7-x}\)La3Zr\({}_{2-x}\)Ta x O12 with garnet-type structure. J. Power Sources 206, 236–244 (2012) CrossRef Buschmann, H., Berendts, S., Mogwitz, B., Janek, J.: Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors Li7La3Zr2O12 and Li\({}_{7-x}\)La3Zr\({}_{2-x}\)Ta x O12 with garnet-type structure. J. Power Sources 206, 236–244 (2012) CrossRef
50.
Zurück zum Zitat Fergus, J.W.: Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 195, 4554–4569 (2010) CrossRef Fergus, J.W.: Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 195, 4554–4569 (2010) CrossRef
51.
Zurück zum Zitat Golodnitsky, D.: Electrolytes: single lithium ion conducting polymers. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 5, S. 112. Elsevier, Amsterdam (2009) CrossRef Golodnitsky, D.: Electrolytes: single lithium ion conducting polymers. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 5, S. 112. Elsevier, Amsterdam (2009) CrossRef
52.
Zurück zum Zitat Hartmann, P., Leichtweiss, Th., Busche, M.R., Schneider, M., Reich, M., Sann, J., Adelhelm, Ph., Janek, J.: Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117(41), 21064–21074 (2013) CrossRef Hartmann, P., Leichtweiss, Th., Busche, M.R., Schneider, M., Reich, M., Sann, J., Adelhelm, Ph., Janek, J.: Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117(41), 21064–21074 (2013) CrossRef
53.
Zurück zum Zitat Ma, Ch., Rangasamy, E., Liang, Ch., Sakamoto, J., More, K.L., Chi, M.: Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li+/H+ exchange in aqueous solutions. Angew. Chem. 127(1), 131–135 (2015) CrossRef Ma, Ch., Rangasamy, E., Liang, Ch., Sakamoto, J., More, K.L., Chi, M.: Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li+/H+ exchange in aqueous solutions. Angew. Chem. 127(1), 131–135 (2015) CrossRef
54.
Zurück zum Zitat Meziane, R., Bonnet, J.-P., Courty, M., Djellab, K., Armand, M.: Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta 57, 14–19 (2011) CrossRef Meziane, R., Bonnet, J.-P., Courty, M., Djellab, K., Armand, M.: Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta 57, 14–19 (2011) CrossRef
55.
Zurück zum Zitat Ohta, S., Kobayashi, T., Asaoka, T.: High lithium ionic conductivity in the garnet-type oxide Li\({}_{{7-X}}\) La3(Zr\({}_{{2-X}}\), NbX)O12 (X = 0–2). J. Power Sources 196, 3342–3345 (2011) CrossRef Ohta, S., Kobayashi, T., Asaoka, T.: High lithium ionic conductivity in the garnet-type oxide Li\({}_{{7-X}}\) La3(Zr\({}_{{2-X}}\), NbX)O12 (X = 0–2). J. Power Sources 196, 3342–3345 (2011) CrossRef
56.
Zurück zum Zitat Ohta, S., Komagata, S., Seki, J., Saeki, T., Morishita, Sh., Asaoka, T.: All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J. Power Sources 238, 53 (2013) CrossRef Ohta, S., Komagata, S., Seki, J., Saeki, T., Morishita, Sh., Asaoka, T.: All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J. Power Sources 238, 53 (2013) CrossRef
57.
Zurück zum Zitat Wang, L., Goodenough, J.B.: DOE Vehicle Technologies Annual Merit Review Meeting, May 14–18 (2012) Wang, L., Goodenough, J.B.: DOE Vehicle Technologies Annual Merit Review Meeting, May 14–18 (2012)
58.
Zurück zum Zitat Jones, K.S.: Ceramic Leadership Summit. American Ceramic Society, Baltimore, Aug 1–3, 2011 Jones, K.S.: Ceramic Leadership Summit. American Ceramic Society, Baltimore, Aug 1–3, 2011
59.
Zurück zum Zitat Arai, H.: Metal storage/metal air (Zn, Fe, Al, Mg). In: Moseley, P.T., Garche, J. (Hrsg.) Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Kap. 18, S. 337–344. Elsevier, Amsterdam (2015) CrossRef Arai, H.: Metal storage/metal air (Zn, Fe, Al, Mg). In: Moseley, P.T., Garche, J. (Hrsg.) Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Kap. 18, S. 337–344. Elsevier, Amsterdam (2015) CrossRef
60.
Zurück zum Zitat Arthur, T.S., Singh, N., Matsui, M.: Electrodeposited Bi, Sb and B\({}_{\mathrm{i}1-x}\)Sb x alloys as anodes for Mg-ion batteries. Electrochem. Commun. 16, 103–106 (2012) CrossRef Arthur, T.S., Singh, N., Matsui, M.: Electrodeposited Bi, Sb and B\({}_{\mathrm{i}1-x}\)Sb x alloys as anodes for Mg-ion batteries. Electrochem. Commun. 16, 103–106 (2012) CrossRef
61.
Zurück zum Zitat Aurbach, D., Weissman, I., Gofer, Y., Levi, E.: Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem. Rec. 3, 61–73 (2003) CrossRef Aurbach, D., Weissman, I., Gofer, Y., Levi, E.: Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem. Rec. 3, 61–73 (2003) CrossRef
62.
Zurück zum Zitat Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., et al.: Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000) CrossRef Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., et al.: Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000) CrossRef
63.
Zurück zum Zitat (a) Doe, R.E., Han, R., Hwang, J., Gmitter, A., Shterenberg, I., Yoo, H.D., et al.: Novel electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 50, 243–245 (2014) (b) WO/2013/096827A1 (2013), US 20130252112 (2013), US 20130252114 (2013) (a) Doe, R.E., Han, R., Hwang, J., Gmitter, A., Shterenberg, I., Yoo, H.D., et al.: Novel electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 50, 243–245 (2014) (b) WO/2013/096827A1 (2013), US 20130252112 (2013), US 20130252114 (2013)
64.
Zurück zum Zitat Gofer, Y., Chusid, O., Aurbach, D., Gan, R.: Magnesium batteries. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 285–301. Elsevier, Amsterdam (2009) CrossRef Gofer, Y., Chusid, O., Aurbach, D., Gan, R.: Magnesium batteries. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 285–301. Elsevier, Amsterdam (2009) CrossRef
65.
Zurück zum Zitat Jörissen, L.: Secondary batteries, metal-air systems: bifunctional oxygen electrodes. In: Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 356. Elsevier, Amsterdam (2009) CrossRef Jörissen, L.: Secondary batteries, metal-air systems: bifunctional oxygen electrodes. In: Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 356. Elsevier, Amsterdam (2009) CrossRef
66.
Zurück zum Zitat Kakibe, T., Hishii, J., Yoshimoto, N., Egashira, M., Morita, M.: Binary ionic liquid electrolytes containing organo-magnesium complex for rechargeable magnesium batteries. J. Power Sources 203, 195–200 (2012) CrossRef Kakibe, T., Hishii, J., Yoshimoto, N., Egashira, M., Morita, M.: Binary ionic liquid electrolytes containing organo-magnesium complex for rechargeable magnesium batteries. J. Power Sources 203, 195–200 (2012) CrossRef
67.
Zurück zum Zitat Kim, H.S., Arthur, T.S., Allred, G.D., Zajicek, J., Newman, J.G., Rodnyansky, A.E., et al.: Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2, 427 (2011) CrossRef Kim, H.S., Arthur, T.S., Allred, G.D., Zajicek, J., Newman, J.G., Rodnyansky, A.E., et al.: Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2, 427 (2011) CrossRef
68.
Zurück zum Zitat Levi, E., Gofer, Y., Aurbach, D.: On the way to rechargeable Mg batteries: The challenge of new cathode materials. Chem. Mater. 22(3), 860–868 (2010) CrossRef Levi, E., Gofer, Y., Aurbach, D.: On the way to rechargeable Mg batteries: The challenge of new cathode materials. Chem. Mater. 22(3), 860–868 (2010) CrossRef
69.
Zurück zum Zitat Muldoon, J., Bucur, C.B., Oliver, A.G., Sugimoto, T., Matsui, M., Kim, H.S., et al.: Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 5, 5941–5950 (2012) Muldoon, J., Bucur, C.B., Oliver, A.G., Sugimoto, T., Matsui, M., Kim, H.S., et al.: Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 5, 5941–5950 (2012)
70.
Zurück zum Zitat Saha, P., Datta, M.K., Velikokhatnyi, O.I., Manivannan, A., Alman, D., Kumta, P.N.: Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater. Sci. 66, 1–86 (2014) CrossRef Saha, P., Datta, M.K., Velikokhatnyi, O.I., Manivannan, A., Alman, D., Kumta, P.N.: Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater. Sci. 66, 1–86 (2014) CrossRef
71.
Zurück zum Zitat Singh, N., Arthur, T.S., Ling, C., Matsui, M., Mizuno, F.: A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem. Commun. 49, 149–151 (2013) CrossRef Singh, N., Arthur, T.S., Ling, C., Matsui, M., Mizuno, F.: A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem. Commun. 49, 149–151 (2013) CrossRef
72.
Zurück zum Zitat Wang, W., Jiang, B., Xiong, W., Sun, H., Lin, Z., et al.: A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Sci. Rep. 3(3383) (2013) Wang, W., Jiang, B., Xiong, W., Sun, H., Lin, Z., et al.: A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Sci. Rep. 3(3383) (2013)
73.
Zurück zum Zitat (a) Yu, X., Licht, S.: Advances in Fe(VI) charge storage, Part I. Primary alkaline super-iron batteries. J. Power Sources 171, 966–980 (2007) b) Advances in Fe(VI) charge storage: Part II. Reversible alkaline super-iron batteries and nonaqueous super-iron batteries. J. Power Sources 171(2), 1010–1022 (2007) (a) Yu, X., Licht, S.: Advances in Fe(VI) charge storage, Part I. Primary alkaline super-iron batteries. J. Power Sources 171, 966–980 (2007) b) Advances in Fe(VI) charge storage: Part II. Reversible alkaline super-iron batteries and nonaqueous super-iron batteries. J. Power Sources 171(2), 1010–1022 (2007)
74.
Zurück zum Zitat Zhang, R., Yu, X., Nam, K.-W., Ling, C., Arthur, T.S., Song, W., Knapp, A.M., Ehrlich, S.N., Yang, X.-Q., Matsui, M.: α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 23, 110–113 (2012) CrossRef Zhang, R., Yu, X., Nam, K.-W., Ling, C., Arthur, T.S., Song, W., Knapp, A.M., Ehrlich, S.N., Yang, X.-Q., Matsui, M.: α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 23, 110–113 (2012) CrossRef
75.
Zurück zum Zitat Placke, T., Fromm, O., Lux, S.F., Bieker, P., Rothermel, S., Meyer, H.W., Passerini, S., Winter, M.: Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells. J. Electrochem. Soc. 159(11), A1755–A1765 (2012) CrossRef Placke, T., Fromm, O., Lux, S.F., Bieker, P., Rothermel, S., Meyer, H.W., Passerini, S., Winter, M.: Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells. J. Electrochem. Soc. 159(11), A1755–A1765 (2012) CrossRef
76.
Zurück zum Zitat Reddy, A., Fichtner, M.: Batteries based on fluoride shuttle. J. Mater. Chem. 21, 17059–17062 (2011) CrossRef Reddy, A., Fichtner, M.: Batteries based on fluoride shuttle. J. Mater. Chem. 21, 17059–17062 (2011) CrossRef
77.
Zurück zum Zitat Zhao, X., Ren, Sh., Bruns, M., Fichtner, M.: Chloride ion battery: a new member in the rechargeable battery family. J. Power Sources 245, 706–711 (2014) CrossRef Zhao, X., Ren, Sh., Bruns, M., Fichtner, M.: Chloride ion battery: a new member in the rechargeable battery family. J. Power Sources 245, 706–711 (2014) CrossRef
78.
Zurück zum Zitat Amatucci, G.G., Pereira, N.: Fluoride based electrode materials for advanced energy storage devices. J. Fluorine Chem. 128, 243–262 (2007) CrossRef Amatucci, G.G., Pereira, N.: Fluoride based electrode materials for advanced energy storage devices. J. Fluorine Chem. 128, 243–262 (2007) CrossRef
79.
Zurück zum Zitat Bruce, P.G., Scrosati, B., Tarascon, J.-M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008) CrossRef Bruce, P.G., Scrosati, B., Tarascon, J.-M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008) CrossRef
80.
Zurück zum Zitat Cabana, J., Monconduit, L., Larcher, D., Palacín, M.R.: Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010) CrossRef Cabana, J., Monconduit, L., Larcher, D., Palacín, M.R.: Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010) CrossRef
81.
Zurück zum Zitat Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000) CrossRef Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000) CrossRef
Metadaten
Titel
Hochenergiebatterien nach Lithium-Ion
verfasst von
Peter Kurzweil, Prof. Dr.
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-658-10900-4_5