Skip to main content

23.03.2015 | Werkstofftechnik | Schwerpunkt | Online-Artikel

Symphonie in Stahl

verfasst von: Dieter Beste

2 Min. Lesedauer

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
print
DRUCKEN
insite
SUCHEN
loading …

Was macht Eisen bei hohen Temperaturen stabil? Seit Langem beschäftigen sich Materialwissenschaftler mit dieser Frage, die sowohl für die Stahlherstellung als auch dessen Verarbeitung von großer Bedeutung ist. Forscher suchten und fanden den Grund.

Schon seit Längerem wird vermutet, dass die Stabilität von Eisen bei hohen Temperaturen durch eine Kopplung der atomaren Schwingungen und magnetischen Anregungen realisiert wird. Nun berichten Forscher der Abteilung Computergestütztes Materialdesign am Düsseldorfer Max-Planck-Institut für Eisenforschung (MPIE) zusammen mit Kollegen vom California Institute of Technology (Caltech) wie es ihnen gelang, mit völlig neuen theoretischen Ansätzen und aufwendigen experimentellen Untersuchungen dieser Frage auf den Grund zu gehen.

Eisen gehört zu den kristallinen Materialien, das heißt, die Eisenatome sind in einem Gitter angeordnet und weisen eine bestimmte Struktur auf. Mit zunehmender Temperatur beginnen die Atome um ihre Plätze im Gitter mehr und mehr zu schwingen, ähnlich den Saiten einer Geige, die stärker gestrichen oder gezupft werden. Festkörperphysiker sprechen von Gitterschwingungen. Bei Stählen, die überwiegend aus magnetischen Eisenatomen bestehen, existieren neben diesen atomaren Schwingungen auch magnetische Anregungen. Hierfür kann man sich jedes Eisenatom als kleinen Magneten vorstellen, der bei hohen Temperaturen seine Ausrichtung umdreht und ähnlich wie das Schließen von Flötenventilen durch den neuen Zustand für ganz eigene ‚Klänge‘ in einem solchen Duett sorgt.

Messungen entsprechen den theoretischen Vorhersagen

Weitere Artikel zum Thema

Auch in einem Orchester spielen Streicher und Bläser nicht unabhängig voneinander, sondern suchen ganz gezielt Resonanzen und Harmonien. Bisher war es aber weder experimentell noch theoretisch möglich, solchen atomaren Symphonien ‚zuzuhören‘. Eine am MPIE neu entwickelte Methode, die Konzepte aus verschiedensten Zweigen der theoretischen Physik miteinander verbindet, erlaubt es den Forschern nun erstmals den gegenseitigen Einfluss der beiden atomaren Symphoniker über den kompletten Temperaturbereich zu bestimmen. „Es freut uns sehr, dass wir nun diese Kopplung beschreiben können und darüber hinaus unsere theoretischen Vorhersagen auch mit den Messungen unserer experimentellen Kollegen vom Caltech übereinstimmen“, so Fritz Körmann vom MPIE.

Hochtemperaturstähle im Blick

Die neuen Einblicke in die Wechselwirkungen und die thermodynamische Stabilität von Eisen bilden eine Grundlage für die systematische Weiterentwicklung und das Design neuer Hochtemperatur-Stähle. Im Fokus der Max-Planck-Wissenschaftler sind momentan Eisen-Mangan-Stähle, wie zum Beispiel TRIP-Stähle (TRIP steht für Transformation Induced Plasticity), welche sich durch ihre hohe Festigkeit bei gleichzeitig guter Verformbarkeit auszeichnen. Dafür werden die theoretischen Konzepte am MPIE jetzt derart verallgemeinert, dass Materialien mit verschiedensten Legierungskomponenten behandelt werden können.

print
DRUCKEN

Die Hintergründe zu diesem Inhalt

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.