Skip to main content

2020 | OriginalPaper | Buchkapitel

Federated Learning for Open Banking

verfasst von : Guodong Long, Yue Tan, Jing Jiang, Chengqi Zhang

Erschienen in: Federated Learning

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Open banking enables individual customers to own their banking data, which provides fundamental support for the boosting of a new ecosystem of data marketplaces and financial services. In the near future, it is foreseeable to have decentralized data ownership in the finance sector using federated learning. This is a just-in-time technology that can learn intelligent models in a decentralized training manner. The most attractive aspect of federated learning is its ability to decompose model training into a centralized server and distributed nodes without collecting private data. This kind of decomposed learning framework has great potential to protect users’ privacy and sensitive data. Therefore, federated learning combines naturally with an open banking data marketplaces. This chapter will discuss the possible challenges for applying federated learning in the context of open banking, and the corresponding solutions have been explored as well.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abadi, M., et al.: Deep learning with differential privacy. In: The 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016) Abadi, M., et al.: Deep learning with differential privacy. In: The 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)
2.
Zurück zum Zitat Arivazhagan, M.G., Aggarwal, V., Singh, A.K., Choudhary, S.: Federated learning with personalization layers. arXiv:1912.00818 (2019) Arivazhagan, M.G., Aggarwal, V., Singh, A.K., Choudhary, S.: Federated learning with personalization layers. arXiv:​1912.​00818 (2019)
3.
Zurück zum Zitat Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Wortman, J.: Learning bounds for domain adaptation. In: Advances in Neural Information Processing Systems, pp. 129–136 (2008) Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Wortman, J.: Learning bounds for domain adaptation. In: Advances in Neural Information Processing Systems, pp. 129–136 (2008)
4.
Zurück zum Zitat Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: The 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 (2017) Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: The 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 (2017)
5.
Zurück zum Zitat Briggs, C., Fan, Z., Andras, P.: Federated learning with hierarchical clustering of local updates to improve training on Non-IID data. arXiv:2004.11791 (2020) Briggs, C., Fan, Z., Andras, P.: Federated learning with hierarchical clustering of local updates to improve training on Non-IID data. arXiv:​2004.​11791 (2020)
6.
Zurück zum Zitat Brodsky, L., Oakes, L.: Data Sharing and Open Banking. McKinsey Company, New York (2017) Brodsky, L., Oakes, L.: Data Sharing and Open Banking. McKinsey Company, New York (2017)
7.
Zurück zum Zitat Chesbrough, H., Vanhaverbeke, W., West, J.: New Frontiers in Open Innovation. OUP Oxford, Oxford, (2014) Chesbrough, H., Vanhaverbeke, W., West, J.: New Frontiers in Open Innovation. OUP Oxford, Oxford, (2014)
8.
Zurück zum Zitat Chesbrough, H.W.: Open Innovation: The New Imperative for Creating and Profiting from Technology. Harvard Business Press, Brighton (2003) Chesbrough, H.W.: Open Innovation: The New Imperative for Creating and Profiting from Technology. Harvard Business Press, Brighton (2003)
13.
14.
Zurück zum Zitat Open Banking Working Group and others: The open banking standard. Technical report, working paper, Open Data Institute (2018) Open Banking Working Group and others: The open banking standard. Technical report, working paper, Open Data Institute (2018)
18.
Zurück zum Zitat Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., Kim, S.L.: Communication-efficient on-device machine learning: federated distillation and augmentation under Non-IID private data. arXiv:1811.11479 (2018) Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., Kim, S.L.: Communication-efficient on-device machine learning: federated distillation and augmentation under Non-IID private data. arXiv:​1811.​11479 (2018)
19.
Zurück zum Zitat Jiang, J., Ji, S., Long, G.: Decentralized knowledge acquisition for mobile internet applications. World Wide Web, pp. 1–17 (2020) Jiang, J., Ji, S., Long, G.: Decentralized knowledge acquisition for mobile internet applications. World Wide Web, pp. 1–17 (2020)
20.
Zurück zum Zitat Kang, J., Xiong, Z., Niyato, D., Xie, S., Zhang, J.: Incentive mechanism for reliable federated learning: a joint optimization approach to combining reputation and contract theory. IEEE Internet Things J. 6(6), 10700–10714 (2019)CrossRef Kang, J., Xiong, Z., Niyato, D., Xie, S., Zhang, J.: Incentive mechanism for reliable federated learning: a joint optimization approach to combining reputation and contract theory. IEEE Internet Things J. 6(6), 10700–10714 (2019)CrossRef
21.
23.
Zurück zum Zitat Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. arXiv:1812.06127 (2018) Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. arXiv:​1812.​06127 (2018)
24.
Zurück zum Zitat Liang, P.P., Liu, T., Ziyin, L., Salakhutdinov, R., Morency, L.P.: Think locally, act globally: federated learning with local and global representations. arXiv:2001.01523 (2020) Liang, P.P., Liu, T., Ziyin, L., Salakhutdinov, R., Morency, L.P.: Think locally, act globally: federated learning with local and global representations. arXiv:​2001.​01523 (2020)
25.
Zurück zum Zitat Mansour, Y., Mohri, M., Ro, J., Suresh, A.T.: Three approaches for personalization with applications to federated learning. arXiv:2002.10619 (2020) Mansour, Y., Mohri, M., Ro, J., Suresh, A.T.: Three approaches for personalization with applications to federated learning. arXiv:​2002.​10619 (2020)
26.
Zurück zum Zitat Mirshghallah, F., Taram, M., Vepakomma, P., Singh, A., Raskar, R., Esmaeilzadeh, H.: Privacy in deep learning: a survey. arXiv:2004.12254 (2020) Mirshghallah, F., Taram, M., Vepakomma, P., Singh, A., Raskar, R., Esmaeilzadeh, H.: Privacy in deep learning: a survey. arXiv:​2004.​12254 (2020)
28.
Zurück zum Zitat Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)CrossRef Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)CrossRef
29.
Zurück zum Zitat Preuveneers, D., Rimmer, V., Tsingenopoulos, I., Spooren, J., Joosen, W., Ilie-Zudor, E.: Chained anomaly detection models for federated learning: an intrusion detection case study. Appl. Sci. 8(12), 2663 (2018)CrossRef Preuveneers, D., Rimmer, V., Tsingenopoulos, I., Spooren, J., Joosen, W., Ilie-Zudor, E.: Chained anomaly detection models for federated learning: an intrusion detection case study. Appl. Sci. 8(12), 2663 (2018)CrossRef
31.
Zurück zum Zitat Sattler, F., Müller, K.R., Samek, W.: Clustered federated learning: model-agnostic distributed multi-task optimization under privacy constraints. arXiv:1910.01991 (2019) Sattler, F., Müller, K.R., Samek, W.: Clustered federated learning: model-agnostic distributed multi-task optimization under privacy constraints. arXiv:​1910.​01991 (2019)
32.
Zurück zum Zitat Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: The 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321 (2015) Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: The 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321 (2015)
33.
Zurück zum Zitat Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. In: International Conference on Learning Representations (2020) Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. In: International Conference on Learning Representations (2020)
35.
Zurück zum Zitat Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)CrossRef Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)CrossRef
36.
Zurück zum Zitat Yang, Q., Liu, Y., Cheng, Y., Kang, Y., Chen, T., Yu, H.: Federated learning. Synth. Lect. Artif. Intell. Mach. Learn. 13(3), 1–207 (2019)CrossRef Yang, Q., Liu, Y., Cheng, Y., Kang, Y., Chen, T., Yu, H.: Federated learning. Synth. Lect. Artif. Intell. Mach. Learn. 13(3), 1–207 (2019)CrossRef
38.
Zurück zum Zitat Yu, Z., et al.: Federated learning based proactive content caching in edge computing. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2018) Yu, Z., et al.: Federated learning based proactive content caching in edge computing. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2018)
39.
Zurück zum Zitat Zhan, Y., Li, P., Qu, Z., Zeng, D., Guo, S.: A learning-based incentive mechanism for federated learning. IEEE Internet Things J. (2020) Zhan, Y., Li, P., Qu, Z., Zeng, D., Guo, S.: A learning-based incentive mechanism for federated learning. IEEE Internet Things J. (2020)
41.
Metadaten
Titel
Federated Learning for Open Banking
verfasst von
Guodong Long
Yue Tan
Jing Jiang
Chengqi Zhang
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-63076-8_17

Premium Partner