Skip to main content

2020 | OriginalPaper | Buchkapitel

Leading Edge Chemical Crystallography Service Provision and Its Impact on Crystallographic Data Science in the Twenty-First Century

verfasst von : Simon J. Coles, David R. Allan, Christine M. Beavers, Simon J. Teat, Stephen J. W. Holgate, Clare A. Tovee

Erschienen in: 21st Century Challenges in Chemical Crystallography I

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

National facilities provide state-of-the-art crystallographic instrumentation and processes and tend to act as an indicator for the direction of a community in the medium term. There has been a significant step up in terms of instrumentation and approach in the last 10 years which has driven data generation. This has had a significant impact on databases – in turn we observe a substantial change in the use of the Cambridge Structural Database (CSD) from relatively basic search/retrieve to gaining deep understanding about factors that govern the solid state. Databases are now able to drive new science in areas such as crystal engineering. Looking forward, we will see more automated pipelining of the data generation process, and this will require better integration with databases. Databases will provide more predictive power – and this will inform the science/crystallography that should be done.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Clegg W (2000) Synchrotron chemical crystallography. J Chem Soc Dalt Trans:3223–3232 Clegg W (2000) Synchrotron chemical crystallography. J Chem Soc Dalt Trans:3223–3232
3.
Zurück zum Zitat Katrusiak A (2008) High-pressure crystallography. Acta Crystallogr Sect A Found Crystallogr 64:135–148 Katrusiak A (2008) High-pressure crystallography. Acta Crystallogr Sect A Found Crystallogr 64:135–148
4.
Zurück zum Zitat Tidey JP, Wong HLS, Schröder M, Blake AJ (2014) Structural chemistry of metal coordination complexes at high pressure. Coord Chem Rev 277–278:187–207 Tidey JP, Wong HLS, Schröder M, Blake AJ (2014) Structural chemistry of metal coordination complexes at high pressure. Coord Chem Rev 277–278:187–207
5.
Zurück zum Zitat Zhang J-P, Liao P-Q, Zhou H-L, Lin R-B, Chen X-M (2014) Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers. Chem Soc Rev 43:5789–5814PubMed Zhang J-P, Liao P-Q, Zhou H-L, Lin R-B, Chen X-M (2014) Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers. Chem Soc Rev 43:5789–5814PubMed
6.
Zurück zum Zitat Hatcher LE, Raithby PR (2014) Dynamic single-crystal diffraction studies using synchrotron radiation. Coord Chem Rev 277–278:69–79 Hatcher LE, Raithby PR (2014) Dynamic single-crystal diffraction studies using synchrotron radiation. Coord Chem Rev 277–278:69–79
7.
Zurück zum Zitat Barnett SA, Nowell H, Warren MR, Wilcox A, Allan DR (2016) Facilities for small-molecule crystallography at synchrotron sources. Protein Pept Lett 23:211–216PubMed Barnett SA, Nowell H, Warren MR, Wilcox A, Allan DR (2016) Facilities for small-molecule crystallography at synchrotron sources. Protein Pept Lett 23:211–216PubMed
8.
Zurück zum Zitat Nowell H, Barnett SA, Christensen KE, Teat SJ, Allan DR (2012) I19, the small-molecule single-crystal diffraction beamline at diamond light source. J Synchrotron Radiat 19:435–441PubMed Nowell H, Barnett SA, Christensen KE, Teat SJ, Allan DR (2012) I19, the small-molecule single-crystal diffraction beamline at diamond light source. J Synchrotron Radiat 19:435–441PubMed
9.
Zurück zum Zitat McCormick LJ, Giordano N, Teat SJ, Beavers CM (2017) Chemical crystallography at the advanced light source. Crystals 7:382 McCormick LJ, Giordano N, Teat SJ, Beavers CM (2017) Chemical crystallography at the advanced light source. Crystals 7:382
10.
Zurück zum Zitat Hursthouse MB, Coles SJ (2014) The UK national crystallography service; its origins, methods and science. Crystallogr Rev 20:117–154 Hursthouse MB, Coles SJ (2014) The UK national crystallography service; its origins, methods and science. Crystallogr Rev 20:117–154
11.
Zurück zum Zitat Coles SJ, Gale PA (2012) Changing and challenging times for service crystallography. Chem Sci 3:683–689 Coles SJ, Gale PA (2012) Changing and challenging times for service crystallography. Chem Sci 3:683–689
14.
Zurück zum Zitat Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge Structural Database. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:171–179 Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge Structural Database. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:171–179
15.
Zurück zum Zitat Taylor R, Wood PA (2019) A million crystal structures: the whole is greater than the sum of its parts. Chem Rev 119:9427–9477PubMed Taylor R, Wood PA (2019) A million crystal structures: the whole is greater than the sum of its parts. Chem Rev 119:9427–9477PubMed
16.
Zurück zum Zitat Phillips GN (2015) The future of dynamic structural science. Crystallogr Rev 21:310–310 Phillips GN (2015) The future of dynamic structural science. Crystallogr Rev 21:310–310
17.
Zurück zum Zitat Coles SJ, Hursthouse MB (2004) Focusing optics for molybdenum radiation: a bright laboratory source for small-molecule crystallography. J Appl Crystallogr 37:988–992 Coles SJ, Hursthouse MB (2004) Focusing optics for molybdenum radiation: a bright laboratory source for small-molecule crystallography. J Appl Crystallogr 37:988–992
19.
Zurück zum Zitat Hemberg O, Otendal M, Hertz HM (2003) Liquid-metal-jet anode electron-impact x-ray source. Appl Phys Lett 83:1483–1485 Hemberg O, Otendal M, Hertz HM (2003) Liquid-metal-jet anode electron-impact x-ray source. Appl Phys Lett 83:1483–1485
20.
Zurück zum Zitat Otendal M, Tuohimaa T, Vogt U, Hertz HM (2008) A 9keV electron-impact liquid-gallium-jet x-ray source. Rev Sci Instrum 79:016102PubMed Otendal M, Tuohimaa T, Vogt U, Hertz HM (2008) A 9keV electron-impact liquid-gallium-jet x-ray source. Rev Sci Instrum 79:016102PubMed
21.
Zurück zum Zitat Gruner SM, Tate MW, Eikenberry EF (2002) Charge-coupled device area x-ray detectors. Rev Sci Instrum 73:2815–2842 Gruner SM, Tate MW, Eikenberry EF (2002) Charge-coupled device area x-ray detectors. Rev Sci Instrum 73:2815–2842
22.
Zurück zum Zitat Allé P, Wenger E, Dahaoui S, Schaniel D, Lecomte C (2016) Comparison of CCD, CMOS and hybrid pixel x-ray detectors: detection principle and data quality. Phys Scr 91:063001 Allé P, Wenger E, Dahaoui S, Schaniel D, Lecomte C (2016) Comparison of CCD, CMOS and hybrid pixel x-ray detectors: detection principle and data quality. Phys Scr 91:063001
23.
Zurück zum Zitat Kraft P, Bergamaschi A, Broennimann C et al (2009) Performance of single-photon-counting PILATUS detector modules. J Synchrotron Radiat 16:368–375PubMedPubMedCentral Kraft P, Bergamaschi A, Broennimann C et al (2009) Performance of single-photon-counting PILATUS detector modules. J Synchrotron Radiat 16:368–375PubMedPubMedCentral
26.
Zurück zum Zitat Thompson AC, Westbrook EM, Lavender WM, Nix JC (2014) A large area CMOS detector for shutterless collection of x-ray diffraction data. J Phys Conf Ser 493:012019 Thompson AC, Westbrook EM, Lavender WM, Nix JC (2014) A large area CMOS detector for shutterless collection of x-ray diffraction data. J Phys Conf Ser 493:012019
27.
Zurück zum Zitat Elder FR, Gurewitsch AM, Langmuir RV, Pollock HC (1947) Radiation from electrons in a synchrotron. Phys Rev 71:829–830 Elder FR, Gurewitsch AM, Langmuir RV, Pollock HC (1947) Radiation from electrons in a synchrotron. Phys Rev 71:829–830
28.
Zurück zum Zitat Robinson AL (2001) X-ray data booklet. In: Hist. Synchrotron Radiat. Lawrence Berkeley National Laboratory, p Section 2.2 Robinson AL (2001) X-ray data booklet. In: Hist. Synchrotron Radiat. Lawrence Berkeley National Laboratory, p Section 2.2
29.
Zurück zum Zitat Kim KJ (2001) X-ray data booklet. In: Charact. Synchrotron Radiat. Lawrence Berkeley National Laboratory, p Section 2.1 Kim KJ (2001) X-ray data booklet. In: Charact. Synchrotron Radiat. Lawrence Berkeley National Laboratory, p Section 2.1
31.
32.
Zurück zum Zitat Marks S, Zbasnik J, Byme W et al (2002) ALS superbend magnet performance. IEEE Trans Appl Supercond 12:149–152 Marks S, Zbasnik J, Byme W et al (2002) ALS superbend magnet performance. IEEE Trans Appl Supercond 12:149–152
33.
Zurück zum Zitat Eriksson M, van der Veen JF, Quitmann C (2014) Diffraction-limited storage rings – a window to the science of tomorrow. J Synchrotron Radiat 21:837–842PubMed Eriksson M, van der Veen JF, Quitmann C (2014) Diffraction-limited storage rings – a window to the science of tomorrow. J Synchrotron Radiat 21:837–842PubMed
34.
Zurück zum Zitat Raimondi P (2016) ESRF-EBS: the extremely brilliant source project. Synchrotron Radiat News 29:8–15 Raimondi P (2016) ESRF-EBS: the extremely brilliant source project. Synchrotron Radiat News 29:8–15
35.
Zurück zum Zitat Inoue I, Osaka T, Tamasaku K, Ohashi H, Yamazaki H, Goto S, Yabashi M (2018) An X-ray harmonic separator for next-generation synchrotron X-ray sources and X-ray free-electron lasers. J Synchrotron Radiat 25:346–353PubMedPubMedCentral Inoue I, Osaka T, Tamasaku K, Ohashi H, Yamazaki H, Goto S, Yabashi M (2018) An X-ray harmonic separator for next-generation synchrotron X-ray sources and X-ray free-electron lasers. J Synchrotron Radiat 25:346–353PubMedPubMedCentral
36.
Zurück zum Zitat Kirkpatrick P, Baez AV (1948) Formation of optical images by X-rays. J Opt Soc Am 38:766PubMed Kirkpatrick P, Baez AV (1948) Formation of optical images by X-rays. J Opt Soc Am 38:766PubMed
37.
Zurück zum Zitat Helliwell JR (1984) Synchrotron X-radiation protein crystallography: instrumentation, methods and applications. Rep Prog Phys 47:1403–1497 Helliwell JR (1984) Synchrotron X-radiation protein crystallography: instrumentation, methods and applications. Rep Prog Phys 47:1403–1497
38.
Zurück zum Zitat Ballabriga R, Alozy J, Blaj G et al (2013) The Medipix3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. J Instrum 8:C02016 Ballabriga R, Alozy J, Blaj G et al (2013) The Medipix3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. J Instrum 8:C02016
39.
40.
Zurück zum Zitat Graafsma H, Becker J, Gruner SM (2018) Integrating hybrid area detectors for storage ring and free-electron laser applications. In: Synchrotron light sources free. Lasers. Springer, Cham, pp 1–31 Graafsma H, Becker J, Gruner SM (2018) Integrating hybrid area detectors for storage ring and free-electron laser applications. In: Synchrotron light sources free. Lasers. Springer, Cham, pp 1–31
41.
Zurück zum Zitat Leonarski F, Redford S, Mozzanica A et al (2018) Fast and accurate data collection for macromolecular crystallography using the JUNGFRAU detector. Nat Methods 15:799–804PubMed Leonarski F, Redford S, Mozzanica A et al (2018) Fast and accurate data collection for macromolecular crystallography using the JUNGFRAU detector. Nat Methods 15:799–804PubMed
42.
Zurück zum Zitat Harding MM, Kariuki BM, Cernik R, Cressey G (1994) The structure of aurichalcite, (Cu,Zn) 5 (OH) 6 (CO 3 ) 2, determined from a microcrystal. Acta Crystallogr Sect B Struct Sci 50:673–676 Harding MM, Kariuki BM, Cernik R, Cressey G (1994) The structure of aurichalcite, (Cu,Zn) 5 (OH) 6 (CO 3 ) 2, determined from a microcrystal. Acta Crystallogr Sect B Struct Sci 50:673–676
43.
Zurück zum Zitat Cernik RJ, Clegg W, Catlow CRA, Bushnell-Wye G, Flaherty JV, Greaves GN, Burrows I, Taylor DJ, Teat SJ, Hamichi M (1997) A new high-flux chemical and materials crystallography station at the SRS daresbury. 1. Design, construction and test results. J Synchrotron Radiat 4:279–286PubMed Cernik RJ, Clegg W, Catlow CRA, Bushnell-Wye G, Flaherty JV, Greaves GN, Burrows I, Taylor DJ, Teat SJ, Hamichi M (1997) A new high-flux chemical and materials crystallography station at the SRS daresbury. 1. Design, construction and test results. J Synchrotron Radiat 4:279–286PubMed
45.
Zurück zum Zitat Cosier BJ, Glazer AM (1986) A nitrogen-gas-stream cryostat for general X-ray diffraction studies. J Appl Crystallogr 19:105–107 Cosier BJ, Glazer AM (1986) A nitrogen-gas-stream cryostat for general X-ray diffraction studies. J Appl Crystallogr 19:105–107
47.
Zurück zum Zitat Johnson NR, Waddell PG, Clegg W, Probert MR (2017) Remote access revolution: chemical crystallographers enter a new era at diamond light source beamline I19. Crystals 7:360 Johnson NR, Waddell PG, Clegg W, Probert MR (2017) Remote access revolution: chemical crystallographers enter a new era at diamond light source beamline I19. Crystals 7:360
48.
Zurück zum Zitat Delageniere S, Brenchereau P, Launer L et al (2011) ISPyB: an information management system for synchrotron macromolecular crystallography. Bioinformatics 27:3186–3192PubMed Delageniere S, Brenchereau P, Launer L et al (2011) ISPyB: an information management system for synchrotron macromolecular crystallography. Bioinformatics 27:3186–3192PubMed
49.
Zurück zum Zitat Allan D, Nowell H, Barnett S et al (2017) A novel dual air-bearing fixed-χ diffractometer for small-molecule single-crystal X-ray diffraction on beamline I19 at diamond light source. Crystals 7:336 Allan D, Nowell H, Barnett S et al (2017) A novel dual air-bearing fixed-χ diffractometer for small-molecule single-crystal X-ray diffraction on beamline I19 at diamond light source. Crystals 7:336
50.
Zurück zum Zitat Diamond Light Source (2020) DLS data management policy Diamond Light Source (2020) DLS data management policy
51.
Zurück zum Zitat ESRF (2020) ESRF data management policy ESRF (2020) ESRF data management policy
52.
Zurück zum Zitat APS (2020) APS data management policy APS (2020) APS data management policy
53.
Zurück zum Zitat Christensen J, Horton PN, Bury CS, Dickerson JL, Taberman H, Garman EF, Coles SJ (2019) Radiation damage in small-molecule crystallography: fact not fiction. IUCrJ 6:703–713PubMedPubMedCentral Christensen J, Horton PN, Bury CS, Dickerson JL, Taberman H, Garman EF, Coles SJ (2019) Radiation damage in small-molecule crystallography: fact not fiction. IUCrJ 6:703–713PubMedPubMedCentral
54.
Zurück zum Zitat Garman EF, Weik M (2017) Radiation damage in macromolecular crystallography. In: Methods Mol Biol. pp 467–489 Garman EF, Weik M (2017) Radiation damage in macromolecular crystallography. In: Methods Mol Biol. pp 467–489
56.
Zurück zum Zitat Hall SR (1991) The STAR file: a new format for electronic data transfer and archiving. J Chem Inf Model 31:326–333 Hall SR (1991) The STAR file: a new format for electronic data transfer and archiving. J Chem Inf Model 31:326–333
57.
Zurück zum Zitat Hall SR, Allen FH, Brown ID (1991) The crystallographic information file (CIF): a new standard archive file for crystallography. Acta Crystallogr Sect A Found Crystallogr 47:655–685 Hall SR, Allen FH, Brown ID (1991) The crystallographic information file (CIF): a new standard archive file for crystallography. Acta Crystallogr Sect A Found Crystallogr 47:655–685
58.
Zurück zum Zitat Brown ID, McMahon B (2002) CIF: the computer language of crystallography. Acta Crystallogr Sect B Struct Sci 58:317–324 Brown ID, McMahon B (2002) CIF: the computer language of crystallography. Acta Crystallogr Sect B Struct Sci 58:317–324
59.
Zurück zum Zitat Bernstein HJ, Bollinger JC, Brown ID, Gražulis S, Hester JR, McMahon B, Spadaccini N, Westbrook JD, Westrip SP (2016) Specification of the crystallographic information file format, version 2.0. J Appl Crystallogr 49:277–284 Bernstein HJ, Bollinger JC, Brown ID, Gražulis S, Hester JR, McMahon B, Spadaccini N, Westbrook JD, Westrip SP (2016) Specification of the crystallographic information file format, version 2.0. J Appl Crystallogr 49:277–284
61.
Zurück zum Zitat Spek AL (2003) Single-crystal structure validation with the program PLATON. J Appl Crystallogr 36:7–13 Spek AL (2003) Single-crystal structure validation with the program PLATON. J Appl Crystallogr 36:7–13
62.
Zurück zum Zitat Spek AL (2009) Structure validation in chemical crystallography. Acta Crystallogr Sect D Biol Crystallogr 65:148–155 Spek AL (2009) Structure validation in chemical crystallography. Acta Crystallogr Sect D Biol Crystallogr 65:148–155
63.
Zurück zum Zitat Spek AL (2018) What makes a crystal structure report valid? Inorg Chim Acta 470:232–237 Spek AL (2018) What makes a crystal structure report valid? Inorg Chim Acta 470:232–237
64.
68.
Zurück zum Zitat Gražulis S, Chateigner D, Downs RT et al (2009) Crystallography open database – an open-access collection of crystal structures. J Appl Crystallogr 42:726–729PubMedPubMedCentral Gražulis S, Chateigner D, Downs RT et al (2009) Crystallography open database – an open-access collection of crystal structures. J Appl Crystallogr 42:726–729PubMedPubMedCentral
69.
Zurück zum Zitat Hellenbrandt M (2004) The inorganic crystal structure database (ICSD)—present and future. Crystallogr Rev 10:17–22 Hellenbrandt M (2004) The inorganic crystal structure database (ICSD)—present and future. Crystallogr Rev 10:17–22
70.
Zurück zum Zitat Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J Chem Soc Perkin Trans 2:S1 Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J Chem Soc Perkin Trans 2:S1
71.
Zurück zum Zitat Orpen AG, Brammer L, Allen FH, Kennard O, Watson DG, Taylor R (1989) Supplement. Tables of bond lengths determined by X-ray and neutron diffraction. Part 2. Organometallic compounds and co-ordination complexes of the d- and f-block metals. J Chem Soc Dalt Trans:S1 Orpen AG, Brammer L, Allen FH, Kennard O, Watson DG, Taylor R (1989) Supplement. Tables of bond lengths determined by X-ray and neutron diffraction. Part 2. Organometallic compounds and co-ordination complexes of the d- and f-block metals. J Chem Soc Dalt Trans:S1
72.
Zurück zum Zitat Coles SJ, Frey JG, Hursthouse MB, Light ME, Meacham KE, Marvin DJ, Surridge M (2005) ECSES – examining crystal structures using `e-science’: a demonstrator employing web and grid services to enhance user participation in crystallographic experiments. J Appl Crystallogr 38:819–826 Coles SJ, Frey JG, Hursthouse MB, Light ME, Meacham KE, Marvin DJ, Surridge M (2005) ECSES – examining crystal structures using `e-science’: a demonstrator employing web and grid services to enhance user participation in crystallographic experiments. J Appl Crystallogr 38:819–826
74.
Zurück zum Zitat Bird C, Coles SJ, Frey JG (2015) The evolution of digital chemistry at Southampton. Mol Inform 34:585–597PubMed Bird C, Coles SJ, Frey JG (2015) The evolution of digital chemistry at Southampton. Mol Inform 34:585–597PubMed
76.
Zurück zum Zitat Wilkinson MD, Dumontier M, Aalbersberg IJ et al (2016) The FAIR guiding principles for scientific data management and stewardship. Sci Data 3:160018PubMedPubMedCentral Wilkinson MD, Dumontier M, Aalbersberg IJ et al (2016) The FAIR guiding principles for scientific data management and stewardship. Sci Data 3:160018PubMedPubMedCentral
78.
Zurück zum Zitat Mons B, Neylon C, Velterop J, Dumontier M, da Silva Santos LOB, Wilkinson MD (2017) Cloudy, increasingly FAIR; revisiting the FAIR data guiding principles for the European Open Science cloud. Inf Serv Use 37:49–56 Mons B, Neylon C, Velterop J, Dumontier M, da Silva Santos LOB, Wilkinson MD (2017) Cloudy, increasingly FAIR; revisiting the FAIR data guiding principles for the European Open Science cloud. Inf Serv Use 37:49–56
79.
Zurück zum Zitat Coles SJ, Frey JG, Willighagen EL, Chalk SJ (2019) Taking FAIR on the ChIN: the chemistry implementation network. Data Intell:131–138 Coles SJ, Frey JG, Willighagen EL, Chalk SJ (2019) Taking FAIR on the ChIN: the chemistry implementation network. Data Intell:131–138
84.
Zurück zum Zitat Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H, IUCr (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341 Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H, IUCr (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341
85.
Zurück zum Zitat Betteridge PW, Carruthers JR, Cooper RI, Prout K, Watkin DJ (2003) CRYSTALS version 12: software for guided crystal structure analysis. J Appl Crystallogr 36:1487–1487 Betteridge PW, Carruthers JR, Cooper RI, Prout K, Watkin DJ (2003) CRYSTALS version 12: software for guided crystal structure analysis. J Appl Crystallogr 36:1487–1487
86.
Zurück zum Zitat Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide protein data bank. Nat Struct Mol Biol 10:980–980 Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide protein data bank. Nat Struct Mol Biol 10:980–980
87.
Zurück zum Zitat Kennard O (1996) From private data to public knowledge. Portland Press, London Kennard O (1996) From private data to public knowledge. Portland Press, London
88.
Zurück zum Zitat Marsh RE, Schomaker V (1979) Some incorrect space groups in inorganic chemistry, volume 16. Inorg Chem 18:2331–2336 Marsh RE, Schomaker V (1979) Some incorrect space groups in inorganic chemistry, volume 16. Inorg Chem 18:2331–2336
89.
Zurück zum Zitat Henling LM, Marsh RE (2014) Some more space-group corrections. Acta Crystallogr Sect C Struct Chem 70:834–836 Henling LM, Marsh RE (2014) Some more space-group corrections. Acta Crystallogr Sect C Struct Chem 70:834–836
90.
Zurück zum Zitat Fronczek FR (2018) The inverse Marsh error. Acta Crystallogr Sect A Found Adv 74:a60–a60 Fronczek FR (2018) The inverse Marsh error. Acta Crystallogr Sect A Found Adv 74:a60–a60
91.
92.
Zurück zum Zitat Silver MA, Cary SK, Johnson JA, Baumbach RE, Arico AA, Luckey M, Urban M, Wang JC, Polinski MJ, Chemey A, Liu G, Chen K-W, Van Cleve SM, Marsh ML, Eaton TM, van de Burgt LJ, Gray AL, Hobart DE, Hanson K, Maron L, Gendron F, Autschbach J, Speldrich M, Kögerler P, Yang P, Braley J, Albrecht-Schmitt TE (2016) Characterization of berkelium (III) dipicolinate and borate compounds in solution and the solid state. Science 353:888. https://doi.org/10.1126/science.aaf3762CrossRef Silver MA, Cary SK, Johnson JA, Baumbach RE, Arico AA, Luckey M, Urban M, Wang JC, Polinski MJ, Chemey A, Liu G, Chen K-W, Van Cleve SM, Marsh ML, Eaton TM, van de Burgt LJ, Gray AL, Hobart DE, Hanson K, Maron L, Gendron F, Autschbach J, Speldrich M, Kögerler P, Yang P, Braley J, Albrecht-Schmitt TE (2016) Characterization of berkelium (III) dipicolinate and borate compounds in solution and the solid state. Science 353:888. https://​doi.​org/​10.​1126/​science.​aaf3762CrossRef
93.
Zurück zum Zitat Apostolidis C, Schimmelpfennig B, Magnani N, Lindqvist-Reis P, Walter O, Sykora R, Morgenstern A, Colineau E, Caciuffo R, Klenze R, Haire RG, Rebizant J, Bruchertseifer F, Fanghänel T (2010) [An(H2O)9](CF3SO3)3 (An=U-Cm, Cf): exploring their stability, structural chemistry, and magnetic behavior by experiment and theory. Angew Chem Int Ed 49:6343. https://doi.org/10.1002/anie.201001077CrossRef Apostolidis C, Schimmelpfennig B, Magnani N, Lindqvist-Reis P, Walter O, Sykora R, Morgenstern A, Colineau E, Caciuffo R, Klenze R, Haire RG, Rebizant J, Bruchertseifer F, Fanghänel T (2010) [An(H2O)9](CF3SO3)3 (An=U-Cm, Cf): exploring their stability, structural chemistry, and magnetic behavior by experiment and theory. Angew Chem Int Ed 49:6343. https://​doi.​org/​10.​1002/​anie.​201001077CrossRef
94.
Zurück zum Zitat Polinski MJ, Garner III EB, Maurice R, Planas N, Stritzinger JT, Gannon Parker T, Cross JN, Green TD, Alekseev EV, Van Cleve SM, Depmeier W, Gagliardi L, Shatruk M, Knappenberger KL, Liu G, Skanthakumar S, Soderholm L, Dixon DA, Albrecht-Schmitt TE (2014) Unusual structure, bonding and properties in a Californium borate. Nat Chem 6:387. https://doi.org/10.1038/nchem.1896CrossRefPubMed Polinski MJ, Garner III EB, Maurice R, Planas N, Stritzinger JT, Gannon Parker T, Cross JN, Green TD, Alekseev EV, Van Cleve SM, Depmeier W, Gagliardi L, Shatruk M, Knappenberger KL, Liu G, Skanthakumar S, Soderholm L, Dixon DA, Albrecht-Schmitt TE (2014) Unusual structure, bonding and properties in a Californium borate. Nat Chem 6:387. https://​doi.​org/​10.​1038/​nchem.​1896CrossRefPubMed
95.
Zurück zum Zitat Cary SK, Vasiliu M, Baumbach RE, Stritzinger JT, Green TD, Diefenbach K, Cross JN, Knappenberger KL, Liu G, Silver MA, DePrince AE, Polinski MJ, Van Cleve SM, House JH, Kikugawa N, Gallagher A, Arico AA, Dixon DA, Albrecht-Schmitt TE (2015) Emergence of californium as the second transitional element in the actinide series. Nat Commun 6:6827. https://doi.org/10.1038/ncomms7827CrossRefPubMedPubMedCentral Cary SK, Vasiliu M, Baumbach RE, Stritzinger JT, Green TD, Diefenbach K, Cross JN, Knappenberger KL, Liu G, Silver MA, DePrince AE, Polinski MJ, Van Cleve SM, House JH, Kikugawa N, Gallagher A, Arico AA, Dixon DA, Albrecht-Schmitt TE (2015) Emergence of californium as the second transitional element in the actinide series. Nat Commun 6:6827. https://​doi.​org/​10.​1038/​ncomms7827CrossRefPubMedPubMedCentral
97.
Zurück zum Zitat Moghadam PZ, Li A, Wiggin SB, Tao A, Maloney AGP, Wood PA, Ward SC, Fairen-Jimenez D (2017) Development of a Cambridge Structural Database subset: a collection of metal–organic frameworks for past, present, and future. Chem Mater 29:2618–2625 Moghadam PZ, Li A, Wiggin SB, Tao A, Maloney AGP, Wood PA, Ward SC, Fairen-Jimenez D (2017) Development of a Cambridge Structural Database subset: a collection of metal–organic frameworks for past, present, and future. Chem Mater 29:2618–2625
98.
Zurück zum Zitat Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science (80-) 341:1230444 Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science (80-) 341:1230444
99.
Zurück zum Zitat Tovee C, Ward S, Sarjeant A, Bruno I (2018) Reporting crystal structure data: recent insights. Abstr Pap Am Chem Soc 256 Tovee C, Ward S, Sarjeant A, Bruno I (2018) Reporting crystal structure data: recent insights. Abstr Pap Am Chem Soc 256
100.
Zurück zum Zitat Van Der Sluis P, Spek AL (1990) BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions. Acta Crystallogr Sect A Found Crystallogr 46:194–201 Van Der Sluis P, Spek AL (1990) BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions. Acta Crystallogr Sect A Found Crystallogr 46:194–201
101.
Zurück zum Zitat Allen FH, Bellard S, Brice MD et al (1979) The Cambridge crystallographic data centre: computer-based search, retrieval, analysis and display of information. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 35:2331–2339 Allen FH, Bellard S, Brice MD et al (1979) The Cambridge crystallographic data centre: computer-based search, retrieval, analysis and display of information. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 35:2331–2339
102.
Zurück zum Zitat Johnson CK (1965) ORTEP: a fortran thermal-ellipsoid plot program for crystal structure illustrations Johnson CK (1965) ORTEP: a fortran thermal-ellipsoid plot program for crystal structure illustrations
103.
Zurück zum Zitat Crystal Impact, Putz H, Brandenburg K. Diamond – crystal and molecular structure visualization Crystal Impact, Putz H, Brandenburg K. Diamond – crystal and molecular structure visualization
104.
Zurück zum Zitat CrystalMaker Software Ltd CrystalMaker® CrystalMaker Software Ltd CrystalMaker®
106.
Zurück zum Zitat Watkin DJ, Prout CK, Pearce LJ (1996) Cameron Watkin DJ, Prout CK, Pearce LJ (1996) Cameron
107.
Zurück zum Zitat Johnson CK, Burnett MN (1996) ORTEPIII Johnson CK, Burnett MN (1996) ORTEPIII
108.
Zurück zum Zitat Barbour LJ (2001) X-seed — a software tool for supramolecular crystallography. J Supramol Chem 1:189–191 Barbour LJ (2001) X-seed — a software tool for supramolecular crystallography. J Supramol Chem 1:189–191
109.
Zurück zum Zitat Motherwell WDS, Shields GP, Allen FH (1999) Visualization and characterization of non-covalent networks in molecular crystals: automated assignment of graph-set descriptors for asymmetric molecules. Acta Crystallogr Sect B Struct Sci 55:1044–1056 Motherwell WDS, Shields GP, Allen FH (1999) Visualization and characterization of non-covalent networks in molecular crystals: automated assignment of graph-set descriptors for asymmetric molecules. Acta Crystallogr Sect B Struct Sci 55:1044–1056
110.
Zurück zum Zitat Bruno IJ, Cole JC, Edgington PR, Kessler M, Macrae CF, McCabe P, Pearson J, Taylor R (2002) New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr Sect B Struct Sci 58:389–397 Bruno IJ, Cole JC, Edgington PR, Kessler M, Macrae CF, McCabe P, Pearson J, Taylor R (2002) New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr Sect B Struct Sci 58:389–397
111.
Zurück zum Zitat Taylor R, Macrae CF (2001) Rules governing the crystal packing of mono- and dialcohols. Acta Crystallogr Sect B Struct Sci 57:815–827 Taylor R, Macrae CF (2001) Rules governing the crystal packing of mono- and dialcohols. Acta Crystallogr Sect B Struct Sci 57:815–827
112.
Zurück zum Zitat CCDC (1994) Vista – a program for the analysis and display of data retrieved from the CSD CCDC (1994) Vista – a program for the analysis and display of data retrieved from the CSD
113.
Zurück zum Zitat Sykes RA, McCabe P, Allen FH, Battle GM, Bruno IJ, Wood PA (2011) New software for statistical analysis of Cambridge Structural Database data. J Appl Crystallogr 44:882–886PubMedPubMedCentral Sykes RA, McCabe P, Allen FH, Battle GM, Bruno IJ, Wood PA (2011) New software for statistical analysis of Cambridge Structural Database data. J Appl Crystallogr 44:882–886PubMedPubMedCentral
114.
Zurück zum Zitat Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J, IUCr (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457 Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J, IUCr (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457
115.
Zurück zum Zitat Allen FH, Davies JE, Galloy JJ, Johnson O, Kennard O, Macrae CF, Mitchell EM, Mitchell GF, Smith JM, Watson DG (1991) The development of versions 3 and 4 of the Cambridge Structural Database system. J Chem Inf Comput Sci 31:187–204 Allen FH, Davies JE, Galloy JJ, Johnson O, Kennard O, Macrae CF, Mitchell EM, Mitchell GF, Smith JM, Watson DG (1991) The development of versions 3 and 4 of the Cambridge Structural Database system. J Chem Inf Comput Sci 31:187–204
116.
Zurück zum Zitat Stumpfe D, Bajorath J (2011) Similarity searching. Wiley Interdiscip Rev Comput Mol Sci 1:260–282 Stumpfe D, Bajorath J (2011) Similarity searching. Wiley Interdiscip Rev Comput Mol Sci 1:260–282
117.
Zurück zum Zitat Cambridge Crystallographic Data Centre CellCheckCSD – The Cambridge Crystallographic Data Centre (CCDC) Cambridge Crystallographic Data Centre CellCheckCSD – The Cambridge Crystallographic Data Centre (CCDC)
118.
Zurück zum Zitat White FJ, Gál Z, Griffin A, Skarzynski T, Meyer M, Prochniak G, Wood PA, Thomas IR (2011) A new interface to the Cambridge Structural Database (CSD) in CrysAlisPro. Acta Crystallogr Sect A Found Crystallogr 67:C404–C404 White FJ, Gál Z, Griffin A, Skarzynski T, Meyer M, Prochniak G, Wood PA, Thomas IR (2011) A new interface to the Cambridge Structural Database (CSD) in CrysAlisPro. Acta Crystallogr Sect A Found Crystallogr 67:C404–C404
119.
Zurück zum Zitat Chisholm JA, Motherwell S (2004) A new algorithm for performing three-dimensional searches of the Cambridge Structural Database. J Appl Crystallogr 37:331–334 Chisholm JA, Motherwell S (2004) A new algorithm for performing three-dimensional searches of the Cambridge Structural Database. J Appl Crystallogr 37:331–334
120.
Zurück zum Zitat Macrae CF, Bruno IJ, Chisholm JA et al (2008) Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470 Macrae CF, Bruno IJ, Chisholm JA et al (2008) Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470
121.
Zurück zum Zitat Gelbrich T, Hursthouse MB (2005) A versatile procedure for the identification, description and quantification of structural similarity in molecular crystals. CrystEngComm 7:324 Gelbrich T, Hursthouse MB (2005) A versatile procedure for the identification, description and quantification of structural similarity in molecular crystals. CrystEngComm 7:324
122.
Zurück zum Zitat Chisholm JA, Motherwell S (2005) COMPACK : a program for identifying crystal structure similarity using distances. J Appl Crystallogr 38:228–231 Chisholm JA, Motherwell S (2005) COMPACK : a program for identifying crystal structure similarity using distances. J Appl Crystallogr 38:228–231
123.
Zurück zum Zitat Rohlíček J, Skořepová E, Babor M, Čejka J, IUCr (2016) CrystalCMP: an easy-to-use tool for fast comparison of molecular packing. J Appl Crystallogr 49:2172–2183 Rohlíček J, Skořepová E, Babor M, Čejka J, IUCr (2016) CrystalCMP: an easy-to-use tool for fast comparison of molecular packing. J Appl Crystallogr 49:2172–2183
124.
Zurück zum Zitat Salbego PRSS, Bender CR, Hörner M, Zanatta N, Frizzo CP, Bonacorso HG, Martins MAPP (2018) Insights on the similarity of supramolecular structures in organic crystals using quantitative indexes. ACS Omega 3:2569–2578PubMedPubMedCentral Salbego PRSS, Bender CR, Hörner M, Zanatta N, Frizzo CP, Bonacorso HG, Martins MAPP (2018) Insights on the similarity of supramolecular structures in organic crystals using quantitative indexes. ACS Omega 3:2569–2578PubMedPubMedCentral
125.
Zurück zum Zitat Thomas IR, Bruno IJ, Cole JC, Macrae CF, Pidcock E, Wood PA (2010) WebCSD : the online portal to the Cambridge Structural Database. J Appl Crystallogr 43:362–366PubMedPubMedCentral Thomas IR, Bruno IJ, Cole JC, Macrae CF, Pidcock E, Wood PA (2010) WebCSD : the online portal to the Cambridge Structural Database. J Appl Crystallogr 43:362–366PubMedPubMedCentral
140.
Zurück zum Zitat Orpen AG, Brammer L, Allen FH, Watson DG, Taylor R (2006) Typical interatomic distances: organometallic compounds and coordination complexes of the d – and f -block metals. Int Tables Crystallogr C:812–896 Orpen AG, Brammer L, Allen FH, Watson DG, Taylor R (2006) Typical interatomic distances: organometallic compounds and coordination complexes of the d – and f -block metals. Int Tables Crystallogr C:812–896
141.
Zurück zum Zitat Allen FH, Watson DG, Brammer L, Orpen AG, Taylor R (2006) Typical interactomic distances: organic compounds. Int Tables Crystallogr C:790–811 Allen FH, Watson DG, Brammer L, Orpen AG, Taylor R (2006) Typical interactomic distances: organic compounds. Int Tables Crystallogr C:790–811
142.
Zurück zum Zitat Bruno IJ, Cole JC, Kessler M et al (2004) Retrieval of crystallographically-derived molecular geometry information. J Chem Inf Comput Sci 44:2133–2144PubMed Bruno IJ, Cole JC, Kessler M et al (2004) Retrieval of crystallographically-derived molecular geometry information. J Chem Inf Comput Sci 44:2133–2144PubMed
143.
Zurück zum Zitat Cottrell SJ, Olsson TSG, Taylor R, Cole JC, Liebeschuetz JW (2012) Validating and understanding ring conformations using small molecule crystallographic data. J Chem Inf Model 52:956–962PubMed Cottrell SJ, Olsson TSG, Taylor R, Cole JC, Liebeschuetz JW (2012) Validating and understanding ring conformations using small molecule crystallographic data. J Chem Inf Model 52:956–962PubMed
144.
Zurück zum Zitat Cole JC, Korb O, McCabe P, Read MG, Taylor R (2018) Knowledge-based conformer generation using the Cambridge Structural Database. J Chem Inf Model 58:615–629PubMed Cole JC, Korb O, McCabe P, Read MG, Taylor R (2018) Knowledge-based conformer generation using the Cambridge Structural Database. J Chem Inf Model 58:615–629PubMed
145.
Zurück zum Zitat Taylor R, Cole J, Korb O, McCabe P (2014) Knowledge-based libraries for predicting the geometric preferences of druglike molecules. J Chem Inf Model 54:2500–2514PubMed Taylor R, Cole J, Korb O, McCabe P (2014) Knowledge-based libraries for predicting the geometric preferences of druglike molecules. J Chem Inf Model 54:2500–2514PubMed
146.
Zurück zum Zitat Bruno IJ, Cole JC, Lommerse JPM, Rowland RS, Taylor R, Verdonk ML (1997) IsoStar: a library of information about nonbonded interactions. J Comput Aided Mol Des 11:525–537PubMed Bruno IJ, Cole JC, Lommerse JPM, Rowland RS, Taylor R, Verdonk ML (1997) IsoStar: a library of information about nonbonded interactions. J Comput Aided Mol Des 11:525–537PubMed
147.
Zurück zum Zitat Taylor R (2016) It Isn’t, it is: the C-H···X (X = O, N, F, Cl) interaction really is significant in crystal packing. Cryst Growth Des 16:4165–4168 Taylor R (2016) It Isn’t, it is: the C-H···X (X = O, N, F, Cl) interaction really is significant in crystal packing. Cryst Growth Des 16:4165–4168
148.
Zurück zum Zitat Bauzá A, Seth SK, Frontera A (2019) Tetrel bonding interactions at work: impact on tin and lead coordination compounds. Coord Chem Rev 384:107–125 Bauzá A, Seth SK, Frontera A (2019) Tetrel bonding interactions at work: impact on tin and lead coordination compounds. Coord Chem Rev 384:107–125
149.
Zurück zum Zitat Bauzá A, Frontera A (2015) Aerogen bonding interaction: a new supramolecular force? Angew Chemie – Int Ed 54:7340–7343 Bauzá A, Frontera A (2015) Aerogen bonding interaction: a new supramolecular force? Angew Chemie – Int Ed 54:7340–7343
150.
Zurück zum Zitat Mikherdov AS, Kinzhalov MA, Novikov AS, Boyarskiy VP, Boyarskaya IA, Avdontceva MS, Kukushkin VY (2018) Ligation-enhanced π-hole···π interactions involving isocyanides: effect of π-hole···π noncovalent bonding on conformational stabilization of acyclic diaminocarbene ligands. Inorg Chem 57:6722–6733PubMed Mikherdov AS, Kinzhalov MA, Novikov AS, Boyarskiy VP, Boyarskaya IA, Avdontceva MS, Kukushkin VY (2018) Ligation-enhanced π-hole···π interactions involving isocyanides: effect of π-hole···π noncovalent bonding on conformational stabilization of acyclic diaminocarbene ligands. Inorg Chem 57:6722–6733PubMed
151.
Zurück zum Zitat Rissanen K (2017) Crystallography of encapsulated molecules. Chem Soc Rev 46:2638–2648PubMed Rissanen K (2017) Crystallography of encapsulated molecules. Chem Soc Rev 46:2638–2648PubMed
152.
Zurück zum Zitat Wood PA, Olsson TSG, Cole JC, Cottrell SJ, Feeder N, Galek PTA, Groom CR, Pidcock E (2013) Evaluation of molecular crystal structures using full interaction maps. CrystEngComm 15:65–72 Wood PA, Olsson TSG, Cole JC, Cottrell SJ, Feeder N, Galek PTA, Groom CR, Pidcock E (2013) Evaluation of molecular crystal structures using full interaction maps. CrystEngComm 15:65–72
153.
Zurück zum Zitat Feeder N, Pidcock E, Reilly AM, Sadiq G, Doherty CL, Back KR, Meenan P, Docherty R (2015) The integration of solid-form informatics into solid-form selection. J Pharm Pharmacol 67:857–868PubMed Feeder N, Pidcock E, Reilly AM, Sadiq G, Doherty CL, Back KR, Meenan P, Docherty R (2015) The integration of solid-form informatics into solid-form selection. J Pharm Pharmacol 67:857–868PubMed
154.
Zurück zum Zitat Galek PTA, Pidcock E, Wood PA, Feeder N, Allen FH (2016) Navigating the solid form landscape with structural informatics. In: Computational pharmaceutical solid state chemistry. Wiley, Hoboken, pp 15–35 Galek PTA, Pidcock E, Wood PA, Feeder N, Allen FH (2016) Navigating the solid form landscape with structural informatics. In: Computational pharmaceutical solid state chemistry. Wiley, Hoboken, pp 15–35
155.
Zurück zum Zitat Galek PTA, Fábián L, Motherwell WDS, Allen FH, Feeder N (2007) Knowledge-based model of hydrogen-bonding propensity in organic crystals. Acta Crystallogr Sect B Struct Sci 63:768–782 Galek PTA, Fábián L, Motherwell WDS, Allen FH, Feeder N (2007) Knowledge-based model of hydrogen-bonding propensity in organic crystals. Acta Crystallogr Sect B Struct Sci 63:768–782
156.
Zurück zum Zitat Bruno IJ, Shields GP, Taylor R (2011) Deducing chemical structure from crystallographically determined atomic coordinates. Acta Crystallogr Sect B Struct Sci 67:333–349 Bruno IJ, Shields GP, Taylor R (2011) Deducing chemical structure from crystallographically determined atomic coordinates. Acta Crystallogr Sect B Struct Sci 67:333–349
159.
Zurück zum Zitat Cole JC, Giangreco I, Groom CR (2017) Using more than 801 296 small-molecule crystal structures to aid in protein structure refinement and analysis. Acta Crystallogr Sect D Struct Biol 73:234–239 Cole JC, Giangreco I, Groom CR (2017) Using more than 801 296 small-molecule crystal structures to aid in protein structure refinement and analysis. Acta Crystallogr Sect D Struct Biol 73:234–239
160.
Zurück zum Zitat Groom CR, Cole JC (2017) The use of small-molecule structures to complement protein-ligand crystal structures in drug discovery. Acta Crystallogr Sect D Struct Biol 73:240–245 Groom CR, Cole JC (2017) The use of small-molecule structures to complement protein-ligand crystal structures in drug discovery. Acta Crystallogr Sect D Struct Biol 73:240–245
161.
Zurück zum Zitat Verdonk ML, Cole JC, Taylor R (1999) SuperStar: a knowledge-based approach for identifying interaction sites in proteins. J Mol Biol 289:1093–1108PubMed Verdonk ML, Cole JC, Taylor R (1999) SuperStar: a knowledge-based approach for identifying interaction sites in proteins. J Mol Biol 289:1093–1108PubMed
162.
Zurück zum Zitat Hendlich M (1998) Databases for protein–ligand complexes. Acta Crystallogr Sect D Biol Crystallogr 54:1178–1182 Hendlich M (1998) Databases for protein–ligand complexes. Acta Crystallogr Sect D Biol Crystallogr 54:1178–1182
163.
Zurück zum Zitat Bergner A, Gunther J, Hendlich M, Klebe G, Verdonk M (2001) Use of relibase for retrieving complex three-dimensional interaction patterns including crystallographic packing effects. Biopolymers 61:99–110PubMed Bergner A, Gunther J, Hendlich M, Klebe G, Verdonk M (2001) Use of relibase for retrieving complex three-dimensional interaction patterns including crystallographic packing effects. Biopolymers 61:99–110PubMed
164.
Zurück zum Zitat Hendlich M, Bergner A, Günther J, Klebe G (2003) Relibase: design and development of a database for comprehensive analysis of protein–ligand interactions. J Mol Biol 326:607–620PubMed Hendlich M, Bergner A, Günther J, Klebe G (2003) Relibase: design and development of a database for comprehensive analysis of protein–ligand interactions. J Mol Biol 326:607–620PubMed
165.
Zurück zum Zitat Günther J, Bergner A, Hendlich M, Klebe G (2003) Utilising structural knowledge in drug design strategies: applications using relibase. J Mol Biol 326:621–636PubMed Günther J, Bergner A, Hendlich M, Klebe G (2003) Utilising structural knowledge in drug design strategies: applications using relibase. J Mol Biol 326:621–636PubMed
166.
Zurück zum Zitat Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748PubMed Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748PubMed
167.
Zurück zum Zitat Sun H, Jin Z, Yang C, Akkermans RLC, Robertson SH, Spenley NA, Miller S, Todd SM (2016) COMPASS II: extended coverage for polymer and drug-like molecule databases. J Mol Model 22:47PubMed Sun H, Jin Z, Yang C, Akkermans RLC, Robertson SH, Spenley NA, Miller S, Todd SM (2016) COMPASS II: extended coverage for polymer and drug-like molecule databases. J Mol Model 22:47PubMed
168.
Zurück zum Zitat Vermaas JV, Petridis L, Ralph J, Crowley MF, Beckham GT (2019) Systematic parameterization of lignin for the CHARMM force field. Green Chem 21:109–122 Vermaas JV, Petridis L, Ralph J, Crowley MF, Beckham GT (2019) Systematic parameterization of lignin for the CHARMM force field. Green Chem 21:109–122
169.
Zurück zum Zitat Schärfer C, Schulz-Gasch T, Hert J, Heinzerling L, Schulz B, Inhester T, Stahl M, Rarey M (2013) Inside cover: CONFECT: conformations from an expert collection of torsion patterns (ChemMedChem 10/2013). ChemMedChem 8:1574–1574 Schärfer C, Schulz-Gasch T, Hert J, Heinzerling L, Schulz B, Inhester T, Stahl M, Rarey M (2013) Inside cover: CONFECT: conformations from an expert collection of torsion patterns (ChemMedChem 10/2013). ChemMedChem 8:1574–1574
170.
Zurück zum Zitat Kothiwale S, Mendenhall JL, Meiler J (2015) BCL::Conf: small molecule conformational sampling using a knowledge based rotamer library. J Cheminform 7:47PubMedPubMedCentral Kothiwale S, Mendenhall JL, Meiler J (2015) BCL::Conf: small molecule conformational sampling using a knowledge based rotamer library. J Cheminform 7:47PubMedPubMedCentral
171.
Zurück zum Zitat Korb O, Kuhn B, Hert J, Taylor N, Cole J, Groom C, Stahl M (2016) Interactive and versatile navigation of structural databases. J Med Chem 59:4257–4266PubMed Korb O, Kuhn B, Hert J, Taylor N, Cole J, Groom C, Stahl M (2016) Interactive and versatile navigation of structural databases. J Med Chem 59:4257–4266PubMed
172.
Zurück zum Zitat Groom CR, Olsson TSG, Liebeschuetz JW, Bardwell DA, Bruno IJ, Allen FH (2012) Mining the Cambridge Structural Database for bioisosteres. In: Bioisosteres medicinal chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 75–101 Groom CR, Olsson TSG, Liebeschuetz JW, Bardwell DA, Bruno IJ, Allen FH (2012) Mining the Cambridge Structural Database for bioisosteres. In: Bioisosteres medicinal chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 75–101
174.
Zurück zum Zitat Galek PTA, Pidcock E, Wood PA, Bruno IJ, Groom CR (2012) One in half a million: a solid form informatics study of a pharmaceutical crystal structure. CrystEngComm 14:2391–2403 Galek PTA, Pidcock E, Wood PA, Bruno IJ, Groom CR (2012) One in half a million: a solid form informatics study of a pharmaceutical crystal structure. CrystEngComm 14:2391–2403
175.
Zurück zum Zitat Takieddin K, Khimyak YZ, Fábián L (2016) Prediction of hydrate and solvate formation using statistical models. Cryst Growth Des 16:70–81 Takieddin K, Khimyak YZ, Fábián L (2016) Prediction of hydrate and solvate formation using statistical models. Cryst Growth Des 16:70–81
176.
Zurück zum Zitat Xin D, Gonnella NC, He X, Horspool K (2019) Solvate prediction for pharmaceutical organic molecules with machine learning. Cryst Growth Des 19:1903–1911 Xin D, Gonnella NC, He X, Horspool K (2019) Solvate prediction for pharmaceutical organic molecules with machine learning. Cryst Growth Des 19:1903–1911
177.
Zurück zum Zitat Rama Krishna G, Ukrainczyk M, Zeglinski J, Rasmuson ÅC (2018) Prediction of solid state properties of cocrystals using artificial neural network modeling. Cryst Growth Des 18:133–144 Rama Krishna G, Ukrainczyk M, Zeglinski J, Rasmuson ÅC (2018) Prediction of solid state properties of cocrystals using artificial neural network modeling. Cryst Growth Des 18:133–144
178.
Zurück zum Zitat Bryant MJ, Maloney AGP, Sykes RA (2018) Predicting mechanical properties of crystalline materials through topological analysis. CrystEngComm 20:2698–2704 Bryant MJ, Maloney AGP, Sykes RA (2018) Predicting mechanical properties of crystalline materials through topological analysis. CrystEngComm 20:2698–2704
179.
Zurück zum Zitat Wang C, Sun CC (2019) Computational techniques for predicting mechanical properties of organic crystals: a systematic evaluation. Mol Pharm 16:1732–1741PubMed Wang C, Sun CC (2019) Computational techniques for predicting mechanical properties of organic crystals: a systematic evaluation. Mol Pharm 16:1732–1741PubMed
180.
Zurück zum Zitat Pudasaini N, Upadhyay PP, Parker CR, Hagen SU, Bond AD, Rantanen J (2017) Downstream processability of crystal habit-modified active pharmaceutical ingredient. Org Process Res Dev 21:571–577 Pudasaini N, Upadhyay PP, Parker CR, Hagen SU, Bond AD, Rantanen J (2017) Downstream processability of crystal habit-modified active pharmaceutical ingredient. Org Process Res Dev 21:571–577
181.
Zurück zum Zitat Turner TD, Hatcher LE, Wilson CC, Roberts KJ (2019) Habit modification of the active pharmaceutical ingredient lovastatin through a predictive solvent selection approach. J Pharm Sci 108:1779–1787PubMed Turner TD, Hatcher LE, Wilson CC, Roberts KJ (2019) Habit modification of the active pharmaceutical ingredient lovastatin through a predictive solvent selection approach. J Pharm Sci 108:1779–1787PubMed
182.
Zurück zum Zitat Hooper D, Clarke FC, Docherty R, Mitchell J, Snowden MJ (2017) Effects of crystal habit on the sticking propensity of ibuprofen—a case study. Int J Pharm 531:266–275PubMed Hooper D, Clarke FC, Docherty R, Mitchell J, Snowden MJ (2017) Effects of crystal habit on the sticking propensity of ibuprofen—a case study. Int J Pharm 531:266–275PubMed
183.
Zurück zum Zitat Chung YG, Camp J, Haranczyk M, Sikora BJ, Bury W, Krungleviciute V, Yildirim T, Farha OK, Sholl DS, Snurr RQ (2014) Computation-ready, experimental metal–organic frameworks: a tool to enable high-throughput screening of nanoporous crystals. Chem Mater 26:6185–6192 Chung YG, Camp J, Haranczyk M, Sikora BJ, Bury W, Krungleviciute V, Yildirim T, Farha OK, Sholl DS, Snurr RQ (2014) Computation-ready, experimental metal–organic frameworks: a tool to enable high-throughput screening of nanoporous crystals. Chem Mater 26:6185–6192
184.
Zurück zum Zitat First EL, Floudas CA (2013) MOFomics: computational pore characterization of metal-organic frameworks. Microporous Mesoporous Mater 165:32–39 First EL, Floudas CA (2013) MOFomics: computational pore characterization of metal-organic frameworks. Microporous Mesoporous Mater 165:32–39
185.
Zurück zum Zitat Watanabe T, Sholl DS (2012) Accelerating applications of metal–organic frameworks for gas adsorption and separation by computational screening of materials. Langmuir 28:14114–14128PubMed Watanabe T, Sholl DS (2012) Accelerating applications of metal–organic frameworks for gas adsorption and separation by computational screening of materials. Langmuir 28:14114–14128PubMed
186.
Zurück zum Zitat Barthel S, Alexandrov EV, Proserpio DM, Smit B (2018) Distinguishing metal–organic frameworks. Cryst Growth Des 18:1738–1747PubMedPubMedCentral Barthel S, Alexandrov EV, Proserpio DM, Smit B (2018) Distinguishing metal–organic frameworks. Cryst Growth Des 18:1738–1747PubMedPubMedCentral
187.
Zurück zum Zitat Miklitz M, Jelfs KE (2018) pywindow: automated structural analysis of molecular pores. J Chem Inf Model 58:2387–2391PubMedPubMedCentral Miklitz M, Jelfs KE (2018) pywindow: automated structural analysis of molecular pores. J Chem Inf Model 58:2387–2391PubMedPubMedCentral
188.
Zurück zum Zitat Coudert F-X, Fuchs AH (2016) Computational characterization and prediction of metal–organic framework properties. Coord Chem Rev 307:211–236 Coudert F-X, Fuchs AH (2016) Computational characterization and prediction of metal–organic framework properties. Coord Chem Rev 307:211–236
189.
Zurück zum Zitat Goldsmith J, Wong-Foy AG, Cafarella MJ, Siegel DJ (2013) Theoretical limits of hydrogen storage in metal–organic frameworks: opportunities and trade-offs. Chem Mater 25:3373–3382 Goldsmith J, Wong-Foy AG, Cafarella MJ, Siegel DJ (2013) Theoretical limits of hydrogen storage in metal–organic frameworks: opportunities and trade-offs. Chem Mater 25:3373–3382
190.
Zurück zum Zitat Moghadam PZ, Islamoglu T, Goswami S, Exley J, Fantham M, Kaminski CF, Snurr RQ, Farha OK, Fairen-Jimenez D (2018) Computer-aided discovery of a metal–organic framework with superior oxygen uptake. Nat Commun 9:1378PubMedPubMedCentral Moghadam PZ, Islamoglu T, Goswami S, Exley J, Fantham M, Kaminski CF, Snurr RQ, Farha OK, Fairen-Jimenez D (2018) Computer-aided discovery of a metal–organic framework with superior oxygen uptake. Nat Commun 9:1378PubMedPubMedCentral
191.
Zurück zum Zitat Altintas C, Erucar I, Keskin S (2018) High-throughput computational screening of the metal organic framework database for CH 4/H 2 separations. ACS Appl Mater Interf 10:3668–3679 Altintas C, Erucar I, Keskin S (2018) High-throughput computational screening of the metal organic framework database for CH 4/H 2 separations. ACS Appl Mater Interf 10:3668–3679
192.
Zurück zum Zitat Azar ANV, Velioglu S, Keskin S (2019) Large-scale computational screening of metal organic framework (MOF) membranes and MOF-based polymer membranes for H 2 /N 2 separations. ACS Sustain Chem Eng 7:9525–9536PubMedPubMedCentral Azar ANV, Velioglu S, Keskin S (2019) Large-scale computational screening of metal organic framework (MOF) membranes and MOF-based polymer membranes for H 2 /N 2 separations. ACS Sustain Chem Eng 7:9525–9536PubMedPubMedCentral
193.
Zurück zum Zitat Inokuma Y, Matsumura K, Yoshioka S, Fujita M (2017) Finding a new crystalline sponge from a crystallographic database. Chem – An Asian J 12:208–211 Inokuma Y, Matsumura K, Yoshioka S, Fujita M (2017) Finding a new crystalline sponge from a crystallographic database. Chem – An Asian J 12:208–211
194.
Zurück zum Zitat Zhang L, Chen Z, Su J, Li J (2019) Data mining new energy materials from structure databases. Renew Sust Energ Rev 107:554–567 Zhang L, Chen Z, Su J, Li J (2019) Data mining new energy materials from structure databases. Renew Sust Energ Rev 107:554–567
195.
Zurück zum Zitat Shi P-P, Tang Y-Y, Li P-F, Liao W-Q, Wang Z-X, Ye Q, Xiong R-G (2016) Symmetry breaking in molecular ferroelectrics. Chem Soc Rev 45:3811–3827PubMed Shi P-P, Tang Y-Y, Li P-F, Liao W-Q, Wang Z-X, Ye Q, Xiong R-G (2016) Symmetry breaking in molecular ferroelectrics. Chem Soc Rev 45:3811–3827PubMed
196.
Zurück zum Zitat Cole JM, Kreiling S (2002) Exploiting structure/property relationships in organic non-linear optical materials: developing strategies to realize the potential of TCNQ derivatives. CrystEngComm 4:232–238 Cole JM, Kreiling S (2002) Exploiting structure/property relationships in organic non-linear optical materials: developing strategies to realize the potential of TCNQ derivatives. CrystEngComm 4:232–238
197.
Zurück zum Zitat Phan H, Hrudka JJ, Igimbayeva D, Lawson Daku LM, Shatruk M (2017) A simple approach for predicting the spin state of homoleptic Fe(II) Tris-diimine complexes. J Am Chem Soc 139:6437–6447PubMed Phan H, Hrudka JJ, Igimbayeva D, Lawson Daku LM, Shatruk M (2017) A simple approach for predicting the spin state of homoleptic Fe(II) Tris-diimine complexes. J Am Chem Soc 139:6437–6447PubMed
198.
Zurück zum Zitat Schober C, Reuter K, Oberhofer H (2016) Virtual screening for high carrier mobility in organic semiconductors. J Phys Chem Lett 7:3973–3977PubMed Schober C, Reuter K, Oberhofer H (2016) Virtual screening for high carrier mobility in organic semiconductors. J Phys Chem Lett 7:3973–3977PubMed
199.
Zurück zum Zitat Kunkel C, Schober C, Oberhofer H, Reuter K (2019) Knowledge discovery through chemical space networks: the case of organic electronics. J Mol Model 25:87PubMed Kunkel C, Schober C, Oberhofer H, Reuter K (2019) Knowledge discovery through chemical space networks: the case of organic electronics. J Mol Model 25:87PubMed
200.
Zurück zum Zitat Cole JM, Low KS, Ozoe H, Stathi P, Kitamura C, Kurata H, Rudolf P, Kawase T (2014) Data mining with molecular design rules identifies new class of dyes for dye-sensitised solar cells. Phys Chem Chem Phys 16:26684–26690PubMed Cole JM, Low KS, Ozoe H, Stathi P, Kitamura C, Kurata H, Rudolf P, Kawase T (2014) Data mining with molecular design rules identifies new class of dyes for dye-sensitised solar cells. Phys Chem Chem Phys 16:26684–26690PubMed
201.
Zurück zum Zitat Adalder TK, Dastidar P (2014) Crystal engineering approach toward selective formation of an asymmetric supramolecular synthon in primary ammonium monocarboxylate (PAM) salts and their gelation studies. Cryst Growth Des 14:2254–2262 Adalder TK, Dastidar P (2014) Crystal engineering approach toward selective formation of an asymmetric supramolecular synthon in primary ammonium monocarboxylate (PAM) salts and their gelation studies. Cryst Growth Des 14:2254–2262
202.
Zurück zum Zitat Veits GK, Carter KK, Cox SJ, McNeil AJ (2016) Developing a gel-based sensor using crystal morphology prediction. J Am Chem Soc 138:12228–12233PubMed Veits GK, Carter KK, Cox SJ, McNeil AJ (2016) Developing a gel-based sensor using crystal morphology prediction. J Am Chem Soc 138:12228–12233PubMed
203.
Zurück zum Zitat Elton DC, Boukouvalas Z, Butrico MS, Fuge MD, Chung PW (2018) Applying machine learning techniques to predict the properties of energetic materials. Sci Rep 8:9059PubMedPubMedCentral Elton DC, Boukouvalas Z, Butrico MS, Fuge MD, Chung PW (2018) Applying machine learning techniques to predict the properties of energetic materials. Sci Rep 8:9059PubMedPubMedCentral
204.
Zurück zum Zitat Wicker JGPP, Cooper RI (2015) Will it crystallise? Predicting crystallinity of molecular materials. CrystEngComm 17:1927–1934 Wicker JGPP, Cooper RI (2015) Will it crystallise? Predicting crystallinity of molecular materials. CrystEngComm 17:1927–1934
207.
Zurück zum Zitat Lommerse JPM, Motherwell WDS, Ammon HL et al (2000) A test of crystal structure prediction of small organic molecules. Acta Crystallogr Sect B Struct Sci 56:697–714 Lommerse JPM, Motherwell WDS, Ammon HL et al (2000) A test of crystal structure prediction of small organic molecules. Acta Crystallogr Sect B Struct Sci 56:697–714
208.
Zurück zum Zitat Reilly AM, Cooper RI, Adjiman CS et al (2016) Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:439–459 Reilly AM, Cooper RI, Adjiman CS et al (2016) Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:439–459
209.
Zurück zum Zitat Cole JC, Groom CR, Read MG, Giangreco I, McCabe P, Reilly AM, Shields GP (2016) Generation of crystal structures using known crystal structures as analogues. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:530–541 Cole JC, Groom CR, Read MG, Giangreco I, McCabe P, Reilly AM, Shields GP (2016) Generation of crystal structures using known crystal structures as analogues. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:530–541
210.
Zurück zum Zitat Musil F, De S, Yang J, Campbell JE, Day GM, Ceriotti M (2018) Machine learning for the structure–energy–property landscapes of molecular crystals. Chem Sci 9:1289–1300PubMed Musil F, De S, Yang J, Campbell JE, Day GM, Ceriotti M (2018) Machine learning for the structure–energy–property landscapes of molecular crystals. Chem Sci 9:1289–1300PubMed
211.
Zurück zum Zitat Bryant MJ, Black SN, Blade H, Docherty R, Maloney AGP, Taylor SC (2019) The CSD drug subset: the changing chemistry and crystallography of small molecule pharmaceuticals. J Pharm Sci:1–8 Bryant MJ, Black SN, Blade H, Docherty R, Maloney AGP, Taylor SC (2019) The CSD drug subset: the changing chemistry and crystallography of small molecule pharmaceuticals. J Pharm Sci:1–8
212.
Zurück zum Zitat Fábián L (2009) Cambridge Structural Database analysis of molecular complementarity in cocrystals. Cryst Growth Des 9:1436–1443 Fábián L (2009) Cambridge Structural Database analysis of molecular complementarity in cocrystals. Cryst Growth Des 9:1436–1443
213.
Zurück zum Zitat Altomare A, Cuocci C, Giacovazzo C, Moliterni A, Rizzi R, Corriero N, Falcicchio A (2013) EXPO2013: a kit of tools for phasing crystal structures from powder data. J Appl Crystallogr 46:1231–1235 Altomare A, Cuocci C, Giacovazzo C, Moliterni A, Rizzi R, Corriero N, Falcicchio A (2013) EXPO2013: a kit of tools for phasing crystal structures from powder data. J Appl Crystallogr 46:1231–1235
214.
Zurück zum Zitat Feng ZJ, Dong C (2007) GEST: a program for structure determination from powder diffraction data using a genetic algorithm. J Appl Crystallogr 40:583–588 Feng ZJ, Dong C (2007) GEST: a program for structure determination from powder diffraction data using a genetic algorithm. J Appl Crystallogr 40:583–588
215.
Zurück zum Zitat Toby BH, Von Dreele RB (2013) GSAS-II : the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46:544–549 Toby BH, Von Dreele RB (2013) GSAS-II : the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46:544–549
216.
Zurück zum Zitat Coelho AA (2018) TOPAS and TOPAS-academic : an optimization program integrating computer algebra and crystallographic objects written in C++. J Appl Crystallogr 51:210–218 Coelho AA (2018) TOPAS and TOPAS-academic : an optimization program integrating computer algebra and crystallographic objects written in C++. J Appl Crystallogr 51:210–218
217.
Zurück zum Zitat Schärfer C, Schulz-Gasch T, Ehrlich H-C, Guba W, Rarey M, Stahl M (2013) Torsion angle preferences in druglike chemical space: a comprehensive guide. J Med Chem 56:2016–2028PubMed Schärfer C, Schulz-Gasch T, Ehrlich H-C, Guba W, Rarey M, Stahl M (2013) Torsion angle preferences in druglike chemical space: a comprehensive guide. J Med Chem 56:2016–2028PubMed
218.
Zurück zum Zitat David WIF, Shankland K, van de Streek J, Pidcock E, Motherwell WDS, Cole JC, IUCr (2006) DASH : a program for crystal structure determination from powder diffraction data. J Appl Crystallogr 39:910–915 David WIF, Shankland K, van de Streek J, Pidcock E, Motherwell WDS, Cole JC, IUCr (2006) DASH : a program for crystal structure determination from powder diffraction data. J Appl Crystallogr 39:910–915
219.
Zurück zum Zitat Kabova EA, Cole JC, Korb O, López-Ibáñez M, Williams AC, Shankland K (2017) Improved performance of crystal structure solution from powder diffraction data through parameter tuning of a simulated annealing algorithm. J Appl Crystallogr 50:1411–1420 Kabova EA, Cole JC, Korb O, López-Ibáñez M, Williams AC, Shankland K (2017) Improved performance of crystal structure solution from powder diffraction data through parameter tuning of a simulated annealing algorithm. J Appl Crystallogr 50:1411–1420
220.
Zurück zum Zitat Kabova EA, Cole JC, Korb O, Williams AC, Shankland K (2017) Improved crystal structure solution from powder diffraction data by the use of conformational information. J Appl Crystallogr 50:1421–1427 Kabova EA, Cole JC, Korb O, Williams AC, Shankland K (2017) Improved crystal structure solution from powder diffraction data by the use of conformational information. J Appl Crystallogr 50:1421–1427
221.
Zurück zum Zitat Cole JC, Kabova EA, Shankland K (2014) Utilizing organic and organometallic structural data in powder diffraction. Powder Diffract 29:S19–S30 Cole JC, Kabova EA, Shankland K (2014) Utilizing organic and organometallic structural data in powder diffraction. Powder Diffract 29:S19–S30
222.
Zurück zum Zitat Florence AJ, Bardin J, Johnston B, Shankland N, Griffin TAN, Shankland K (2009) Structure determination from powder data: mogul and CASTEP. Zeitschrift für Krist 2009:215–220 Florence AJ, Bardin J, Johnston B, Shankland N, Griffin TAN, Shankland K (2009) Structure determination from powder data: mogul and CASTEP. Zeitschrift für Krist 2009:215–220
223.
Zurück zum Zitat Shankland K, Spillman MJ, Kabova EA, Edgeley DS, Shankland N (2013) The principles underlying the use of powder diffraction data in solving pharmaceutical crystal structures. Acta Crystallogr Sect C Cryst Struct Commun 69:1251–1259 Shankland K, Spillman MJ, Kabova EA, Edgeley DS, Shankland N (2013) The principles underlying the use of powder diffraction data in solving pharmaceutical crystal structures. Acta Crystallogr Sect C Cryst Struct Commun 69:1251–1259
224.
Zurück zum Zitat Florence AJ, Shankland N, Shankland K et al (2005) Solving molecular crystal structures from laboratory X-ray powder diffraction data with DASH : the state of the art and challenges. J Appl Crystallogr 38:249–259 Florence AJ, Shankland N, Shankland K et al (2005) Solving molecular crystal structures from laboratory X-ray powder diffraction data with DASH : the state of the art and challenges. J Appl Crystallogr 38:249–259
225.
Zurück zum Zitat Bruker AXS Inc (2012) SAINT. Madison, Wisconsin Bruker AXS Inc (2012) SAINT. Madison, Wisconsin
226.
Zurück zum Zitat Reymond J-L, Awale M (2012) Exploring chemical space for drug discovery using the chemical universe database. ACS Chem Neurosci 3:649–657PubMedPubMedCentral Reymond J-L, Awale M (2012) Exploring chemical space for drug discovery using the chemical universe database. ACS Chem Neurosci 3:649–657PubMedPubMedCentral
228.
Zurück zum Zitat Hey T, Tansley S, Tolle K (2009) The fourth paradigm: data-intensive scientific discovery. Microsoft Research Hey T, Tansley S, Tolle K (2009) The fourth paradigm: data-intensive scientific discovery. Microsoft Research
Metadaten
Titel
Leading Edge Chemical Crystallography Service Provision and Its Impact on Crystallographic Data Science in the Twenty-First Century
verfasst von
Simon J. Coles
David R. Allan
Christine M. Beavers
Simon J. Teat
Stephen J. W. Holgate
Clare A. Tovee
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/430_2020_63

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.